206 resultados para gated-controlled lateral phototransistor
Resumo:
A programme of research on the seismic behaviour of retaining walls has been under way at Cambridge since 1981. Centrifuge tests have presently been conducted both on cantilever walls and isolated mass walls, retaining dry sands of varying grading and density. This paper is devoted to the modelling of fixed-base cantilever walls retaining Leighton Buzzard (14/25) sand of relative density 99% with a horizontal surface level with the crest of the wall. The base of the centrifuge container was used to fix the walls, and to provide a rigid lower boundary for the sand. No attempt was made to inhibit the propagation of compression waves from the side of the container opposite the inside face of the model wall. The detailed analysis of dynamic deflections and bending moments was made difficult by the anelastic nature of reinforced concrete, and the difficulty of measuring bending strains thereon. A supplementary programme of well-instrumented tests on Dural walls of similar stiffness, including the modelling of models, was therefore carried out. Refs.
Resumo:
A novel CMOS-compatible, heavily doped drift auxiliary cathode lateral insulated gate transistor (HDD-ACLIGT) structure is analyzed using two-dimensional device simulation techniques. Simulation results indicate that low on-resistance and a fast turn-off time of less than 50 ns can be achieved by incorporating an additional n+ region which is self-aligned to the gate between the p+ auxiliary cathode and the p well, together with an extended p buried layer in an anode-shorted modified lateral insulated gate transistor (MLIGT) structure. The on-state and its transient performance are analyzed in detail. The on-state performances of the HDD-ACLIGT and the MLIGT are compared and discussed. The results indicate that the HDD-ACLIGT structure is well suited for HVICs. The device is also well suited for integration with self-aligned digital CMOS.
Resumo:
A GaAs Vertical Cavity Surface Emitting Laser (VCSEL) that generates controlled modes offset from the center is described. The device is modulated with a 27-1 pseudo-random bit sequence and its output is transmitted along a 1 km length of multimode fiber (MMF). Open eyes are obtained for data rates as high as 1.4Gb/s. The transmission bandwidth increases by a factor of 4 over over-filled launch (OFL). This enhancement is stable against environment influences on the fiber.
Resumo:
The IGBT has become the device of choice in many high-voltage-power electronic applications, by virtue of combining the ease of MOS gate control with an acceptable forward voltage drop. However, designers have retained an interest in MOS gated thyristor structures which have a turn-off capability. These offer low on-state losses as a result of their latching behaviour. Recently, there have been various proposals for dual-gate devices that have a thyristor on-state with IGBT-like switching. Many of these dual gated structures rely on advanced MOS technology, with inherent manufacturing difficulties. The MOS and bipolar gated thyristor offers all the advantages of dual gated performance, while employing standard IGBT processing techniques. The paper describes the MBGT in detail, and presents experimental and simulation results for devices based on realistic commercial processes. It is shown that the MBGT represents a viable power semiconductor device technology, suitable for a diverse range of applications. © IEE, 1998.
Resumo:
A new experimental articulated vehicle with computer-controlled suspensions is used to investigate the benefits of active roll control for heavy vehicles. The mechanical hardware, the instrumentation, and the distributed control architecture are detailed. A simple roll-plane model is developed and validated against experimental data, and used to design a controller based on lateral acceleration feedback. The controller is implemented and tested on the experimental vehicle. By tilting both the tractor drive axle and the trailer inwards, substantial reductions in normalized lateral load transfer are obtained, both in steady state and transient conditions. Power requirements are also considered. © IMechE 2005.
Resumo:
The growth of vertically aligned zinc oxide nanowires (ZnO NW) using a simple vapor deposition method system is reported. The growth properties are studied as a function of the Au catalyst layer thickness, pressure, deposition temperature, and oxygen ratio. It was found that the diameter and density of the nanowires is controlled mostly by the growth temperature and pressure. The alignment of the nanowires depends on a combination of three factors including the pressure, temperature and the oxygen ratio. Our results implicates the growth occurs by a vapor liquid solid (VLS) process [1].
Resumo:
The soil-pipeline interactions under lateral and upward pipe movements in sand are investigated using DEM analysis. The simulations are performed for both medium and dense sand conditions at different embedment ratios of up to 60. The comparison of peak dimensionless forces from the DEM and earlier FEM analyses shows that, for medium sand, both methods show similar peak dimensionless forces. For dense sand, the DEM analysis gives more gradual transition of shallow to deep failure mechanisms than the FEM analysis and the peak dimensionless forces at very deep depth are higher in the DEM analysis than in the FEM analysis. Comparison of the deformation mechanism suggests that this is due to the differences in soil movements around the pipe associated with its particulate nature. The DEM analysis provides supplementary data of the soil-pipeline interaction in sand at deep embedment condition.
Resumo:
A new method has been used to design a power semiconductor device which combines IGBT switching and thyristor on-state characteristics. A single gate signal controls the switching and triggers the transitions between the IGBT and thyristor modes of operation. This paper discusses single-gated devices with multiple modes and aspects of their switching behaviour.
Resumo:
Ultrasound elastography tracks tissue displacements under small levels of compression to obtain images of strain, a mechanical property useful in the detection and characterization of pathology. Due to the nature of ultrasound beamforming, only tissue displacements in the direction of beam propagation, referred to as 'axial', are measured to high quality, although an ability to measure other components of tissue displacement is desired to more fully characterize the mechanical behavior of tissue. Previous studies have used multiple one-dimensional (1D) angled axial displacements tracked from steered ultrasound beams to reconstruct improved quality trans-axial displacements within the scan plane ('lateral'). We show that two-dimensional (2D) displacement tracking is not possible with unmodified electronically-steered ultrasound data, and present a method of reshaping frames of steered ultrasound data to retain axial-lateral orthogonality, which permits 2D displacement tracking. Simulated and experimental ultrasound data are used to compare changes in image quality of lateral displacements reconstructed using 1D and 2D tracked steered axial and steered lateral data. Reconstructed lateral displacement image quality generally improves with the use of 2D displacement tracking at each steering angle, relative to axial tracking alone, particularly at high levels of compression. Due to the influence of tracking noise, unsteered lateral displacements exhibit greater accuracy than axial-based reconstructions at high levels of applied strain. © 2011 SPIE.
Resumo:
This paper explores the long term development of networks of glia and neurons on patterns of Parylene-C on a SiO 2 substrate. We harvested glia and neurons from the Sprague-Dawley (P1-P7) rat hippocampus and utilized an established cell patterning technique in order to investigate cellular migration, over the course of 3 weeks. This work demonstrates that uncontrolled glial mitosis gradually disrupts cellular patterns that are established early during culture. This effect is not attributed to a loss of protein from the Parylene-C surface, as nitrogen levels on the substrate remain stable over 3 weeks. The inclusion of the anti-mitotic cytarabine (Ara-C) in the culture medium moderates glial division and thus, adequately preserves initial glial and neuronal conformity to underlying patterns. Neuronal apoptosis, often associated with the use of Ara-C, is mitigated by the addition of brain derived neurotrophic factor (BDNF). We believe that with the right combination of glial inhibitors and neuronal promoters, the Parylene-C based cell patterning method can generate structured, active neural networks that can be sustained and investigated over extended periods of time. To our knowledge this is the first report on the concurrent application of Ara-C and BDNF on patterned cell cultures. © 2011 Delivopoulos, Murray.