170 resultados para friction braking
Resumo:
The generation of sound by turbulent boundary layer flow at low Mach number over a rough wall is investigated by applying the theoretical model which describes the scattering of the turbulence near field into sound by roughness elements. Attention is focused on the numerical method to approximately quantify the absolute level of the roughness noise radiated to far field. Empirical models for the source statistics are obtained by scaling smooth-wall data through increased skin friction velocity and boundary layer thickness for the rough surface. Numerical integration is performed to determine the roughness noise, and it reproduces the spectral characteristics of the available empirical formula and experimental data. Experiments are conducted to measure the radiated sound from two rough plates in an open jet by four 1/2'' free-field condenser microphones. The measured noise spectra of the rough plates are above that of a smooth plate in 1-2.5 kHz frequency and exhibits encouraging agreement with the predicted spectra. Also, a phased microphone array is utilized to localize the sound source, and it confirms that the rough plates generate higher source strengthes in this frequency range. A parametric study illustrates that the roughness height and roughness density significantly affect the far-field radiated roughness noise with the roughness height having the dominant effect. The estimates of the roughness noise for a Boeing 757 sized aircraft wing show that in high frequency region the sound radiated from surface roughness may exceed that from the trailing edge, and higher overall sound pressure levels for the roughness noise are also observed.
Resumo:
A compact electron cyclotron wave resonance (ECWR) source has been developed for the high rate deposition of hydrogenated tetrahedral amorphous carbon (ta-C:H). The ECWR provides growth rates of up to 900 angstrom/min and an independent control of the deposition rate and ion energy. The ta-C:H was deposited using acetylene as the source gas and was characterized in terms of its bonding, stress and friction coefficient. The results indicated that the ta-C:H produced using this source fulfills the necessary requirements for applications requiring enhanced tribological performance.
Resumo:
Diamond-like carbon (DLC) coatings were deposited on to silicon, glass and metal substrates, using an rf-plasma enhanced chemical vapour deposition (rf-PECVD) process. The resultant film properties were evaluated in respect of material and interfacial property control, based on bias voltage variation and the introduction of inert (He and Ar) and reactive (N2) diluting gases in a CH4 plasma. The analysis techniques used to assess the material properties of the films included AFM, EELS, RBS/ERDA, spectroscopic, electrical, stress, microhardness, and adhesion. These were correlated to the tribological performance of the coatings using wear measurements. The most important observation is that He dilution (>90%) promotes enhanced adhesion with respect to all substrate material studies. Coatings typically exhibit a microhardness of the order of 10-20 GPa in films 0.1
Resumo:
A compact electron cyclotron wave resonance (ECWR) source has been developed for the high rate deposition of hydrogenated tetrahedral amorphous carbon (ta-C:H). The ECWR provides growth rates of up to 900 Å/min over a 4″ diameter and an independent control of the deposition rate and ion energy. The ta-C:H was deposited using acetylene as the source gas and was characterized in terms of its sp3 content, mass density, intrinsic stress, hydrogen content, C-H bonding, Raman spectra, optical gap, surface roughness and friction coefficient. The results obtained indicated that the film properties were maximized at an ion energy of approximately 167 eV, corresponding to an energy per daughter carbon ion of 76 eV. The relationship between the incident ion energy and film densification was also explained in terms of the subsurface implantation of carbon ions into the growing film.
Resumo:
The addition of silicon to hydrogenated amorphous carbon can have the advantageous effect of lowering the compressive stress, improving the thermal stability of its hydrogen and maintaining a low friction coefficient up to high humidity. Most experiments to date have been on a-C1-xSix:H alloys deposited by RF plasma enhanced chemical vapour deposition (PECVD). This method gives alloys with considerable hydrogen content and only moderate hardness. Here, we use a high plasma density source, the electron cyclotron wave resonance (ECWR) source, to prepare films with a high deposition rate. The composition and bonding in the alloys is determined by XPS, visible and UV Raman and FTIR spectroscopy. We find that it is possible to produce hard, low stress, low friction, almost humidity insensitive a-C1-xSix:H alloys with a good optical transparency and a band gap over 2 eV.
Resumo:
The addition of silicon to hydrogenated amorphous carbon can have the advantageous effect of lowering the compressive stress, improving the thermal stability of its hydrogen, and maintaining a low friction coefficient up to high humidity. Most experiments to date have been on hydrogenated amorphous carbon-silicon alloys (a-C1-xSix:H) deposited by rf plasma enhanced chemical vapor deposition. This method gives alloys with sizeable hydrogen content and only moderate hardness. Here we use a high plasma density source known as the electron cyclotron wave resonance source to prepare films with higher sp3 content and lower hydrogen content. The composition and bonding in the alloys is determined by x-ray photoelectron spectroscopy, Rutherford backscattering, elastic recoil detection analysis, visible and ultraviolet (UV) Raman spectroscopy, infrared spectroscopy, and x-ray reflectivity. We find that it is possible to produce relatively hard, low stress, low friction, almost humidity insensitive a-C1-xSix:H alloys with a good optical transparency and a band gap well over 2.5 eV. The friction behavior and friction mechanism of these alloys are studied and compared with that of a-C:H, ta-C:H, and ta-C. We show how UV Raman spectroscopy allows the direct detection of Si-C, Si-Hx, and C-Hx vibrations, not seen in visible Raman spectra. © 2001 American Institute of Physics.
Resumo:
An electron cyclotron wave resonant methane plasma discharge was used for the high rate deposition of hydrogenated amorphous carbon (a-C:H). Deposition rates of up to ∼400 Å/min were obtained over substrates up to 2.5 in. in diameter with a film thickness uniformity of ∼±10%. The deposited films were characterised in terms of their mass density, sp3 and hydrogen contents, C-H bonding, intrinsic stress, scratch resistance and friction properties. The deposited films possessed an average sp3 content, mass density and refractive index of ∼58%, 1.76 g/cm3 and 2.035 respectively.Mechanical characterisation indicated that the films possessed very low steady-state coefficients of friction (ca. 0.06) and a moderate shear strength of ∼141 MPa. Nano-indentation measurements also indicated a hardness and elastic modulus of ∼16.1 and 160 GPa respectively. The critical loads required to induce coating failure were also observed to increase with ion energy as a consequence of the increase in degree of ion mixing at the interface. Furthermore, coating failure under scratch test conditions was observed to take place via fracture within the silicon substrate itself, rather than either in the coating or at the film/substrate interface. © 2003 Elsevier B.V. All rights reserved.
Resumo:
The finite element method is used to analyze the elastodynamic response of a columnar thermal barrier coating due to normal impact and oblique impact by an erosive particle. An assessment is made of the erosion by crack growth from preexisting flaws at the edge of each column: it is demonstrated that particle impacts can be sufficiently severe to give rise to columnar cracking. First, the transient stress state induced by the normal impact of a circular cylinder or a sphere is calculated in order to assess whether a 2D calculation adequately captures the more realistic 3D behavior. It is found that the transient stress states for the plane strain and axisymmetric models are similar. The sensitivity of response to particle diameter and to impact velocity is determined for both the cylinder and the sphere. Second, the transient stress state is explored for 2D oblique impact by a circular cylindrical particle and by an angular cylindrical particle. The sensitivity of transient tensile stress within the columns to particle shape (circular and angular), impact angle, impact location, orientation of the angular particle, and to the level of friction is explored in turn. The paper concludes with an evaluation of the effect of inclining the thermal barrier coating columns upon their erosion resistance. © 2011 The American Ceramic Society.
Resumo:
In the 'free-ball' version of the micro-scale abrasion or ball-cratering test the rotating ball rests against a tilted sample and a grooved drive shaft. Tests under nominally identical conditions with different apparatus commonly show small but significant differences in measured wear rate. An indirect method has been developed and demonstrated for continuous on-line measurement of the coefficient of friction in the free-ball test. Experimental investigation of the effects of sample tilt angle and drive shaft groove width shows that both these factors influence the stability of the rotation of the ball, and the shape of the abrasive slurry pool, which in turn affect the coefficient of friction in the wear scar area and the measured wear rate. It is suggested that in order to improve the reproducibility of this method the geometry of the apparatus should be specified. For the apparatus used in this work with a steel ball of 25 mm diameter, a sample tilt angle of 60-75° and a shaft groove width of about 10mm provided the most stable ball motion and a wear rate which showed least variability. © 2004 Elsevier B.V. All rights reserved.
Resumo:
The microscale abrasion or ball-cratering test is being increasingly applied to a wide range of bulk materials and coatings. The response of materials to this test depends critically on the nature of the motion of the abrasive particles in the contact zone: whether they roll and produce multiple indentations in the coating, or slide causing grooving abrasion. Similar phenomena also occur when hard contaminant particles enter a lubricated contact. This paper presents simple quantitative two-dimensional models which describe two aspects of the interaction between a hard abrasive particle and two sliding surfaces. The first model treats the conditions under which a spherical abrasive particle of size d can be entrained into the gap between a rotating sphere of radius R and a plane surface. These conditions are determined by the coefficients of friction between the particle and the sphere, and the particle and the plane, denoted by μs and μp respectively. This model predicts that the values of (μs + μp) and 2μs should both exceed √2d/R for the particles to be entrained into the contact. If either is less than this value, the particle will slide against the sphere and never enter the contact. The second model describes the mechanisms of abrasive wear in a contact when an idealized rhombus-sectioned prismatic particle is located between two parallel plane surfaces separated by a certain distance, which can represent either the thickness of a fluid film or the spacing due to the presence of other particles. It is shown that both the ratio of particle size to the separation of the surfaces and the ratio of the hardnesses of the two surfaces have important influences on the particle motion and hence on the mechanism of the resulting abrasive wear. Results from this model are compared with experimental observations, and the model is shown to lead to realistic predictions. © IMechE 2003.