174 resultados para fracture property


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PD6493:1991 fracture assessment have been performed for a range of large-scale fracture mechanics tests conducted at TWI in the past. These tests cover several material groups, including pressure vessel steels, pipeline steels, stainless steels and aluminium alloys, including parent material and weldments. Ninety-two wide plate and pressure vessel tests have been assessed, following Levels 1, 2 and 3 PD6493:1991 procedures. In total, over 400 assessments have been performed, examining many features of the fracture assessment procedure including toughness input, proof testing, residual stress assumptions and stress state (tension, bending and biaxial). In all cases the large scale tests have been assessed as one would actual structures: i.e., based on lower bound toughness values obtained from small scale fracture toughness specimens.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of PC-based PD6493:1991 fracture assessment procedures has revealed that, under certain circumstances, flaws of different dimensions may be found as being limiting or critical for identical applied conditions. The main causes for multiple solutions are a steep applied stress gradient, residual stress relaxation and flaw re-characterisation. This work uses several case studies to illustrate some of the circumstances under which multiple solutions occurs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We develop a finite-element method for the simulation of dynamic fracture and fragmentation of thin-shells. The shell is spatially discretized with subdivision shell elements and the fracture along the element edges is modeled with a cohesive law. In order to follow the propagation and branching of cracks, subdivision shell elements are pre-fractured ab initio and the crack opening is constrained prior to crack nucleation. This approach allows for shell fracture in an in-plane tearing mode, a shearing mode, or a bending of hinge mode. The good performance of the method is demonstrated through the simulation of petalling failure experiments in aluminum plates. © 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Humans perform fascinating science experiments at home on a daily basis when they undertake the modification of natural and naturally-derived materials by a cooking process prior to consumption. The material properties of such foods are of interest to food scientists (texture is often fundamental to food acceptability), oral biologists (foods modulate feeding behavior), anthropologists (cooking is probably as old as the genus Homo and distinguishes us from all other creatures) and dentists (foods interact with tooth and tooth replacement materials). Materials scientists may be interested in the drastic changes in food properties observed over relatively short cooking times. In the current study, the mechanical properties of one of the most common (and oldest at 4,000+ years) foods on earth, the noodle, were examined as a function of cooking time. Two types of noodles were studied, each made from natural materials (wheat flour, salt, alkali and water) by kneading dough and passing them through a pasta-making machine. These were boiled for between 2-14 min and tested at regular intervals from raw to an overcooked state. Cyclic tensile tests at small strain levels were used to examine energy dissipation characteristics. Energy dissipation was >50% per cycle in uncooked noodles, but decreased by an order of magnitude with cooking. Fractional dissipation values remained approximately constant at cooking times greater than 7 min. Overall, a greater effect of cooking was on viscoplastic dissipation characteristics rather than on fracture resistance. The results of the current study plot the evolution of a viscoplastic mixture into an essentially elastic material in the space of 7 minutes and have broad implications for understanding what cooking does to food materials. In particular, they suggest that textural assessment by consumers of the optimally cooked state of food has a definite physical definition. © 2007 Materials Research Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Carbon nanotubes (CNTs) are known to exhibit extraordinary mechanical properties such as high tensile strength, the highest Young modulus etc. These, combining with their large aspect ratio, make CNTs an excellent additive candidate to complement or substitute traditional carbon black or glass fiber fillers for the development of nano-reinforced composites. CNTs have thus far been used as additives in polymers, ceramics and metals to be pursued on practical applications of their composites. © 2010 IEEE.