199 resultados para damage depth
Resumo:
The annealing of ion implantation damage in silicon by rapid isothermal heating has been monitored by the time resolved reflectivity (TRR) method. This technique was applied simultaneously at a wavelength of 632. 8nm and also at 1152nm, where the optical absorption coefficient of silicon is less. The two wavelength method simplifies the interpretation of TRR results, extends the measurement depth and allows good resolution of the position of the interface between amorphous and crystalline silicon. The regrowth of amorphous layers in silicon, created by self implantation and implanted with electrically active impurities, was observed. Regrowth in rapid isothermal annealing occurs during the heating up stage of typical thermal cycles. Impurities such as B, P, and As increase the regrowth rate in a manner consistent with a vacancy model for regrowth. The maximum regrowth rate in boron implanted silicon is limited by the solid solubility.
Resumo:
Theory is presented for simulating the dynamic wheel forces generated by heavy road vehicles and the resulting dynamic response of road surfaces to these loads. Sample calculations are provided and the vehicle simulation is validated with data from full-scale tests. The methods are used in the accompanying paper to simulate the road damage done by a tandem-axle vehicle.
Resumo:
The literature relating to road surface failure and design is briefly reviewed and the conventional methods for assessing the road damaging effects of dynamic tire forces are examined. A new time domain technique for analyzing dynamic tire forces and four associated road damage criteria are presented. The force criteria are used to examine the road damaging characteristics of a simple tandem-axle vehicle model for a range of speed and road roughness conditions. It is concluded that for the proposed criteria, the theoretical service life of road surfaces that are prone to fatigue failure may be reduced significantly by the dynamic component of wheel forces. The damage done to approximately five per cent of the road surface area during the passage of a theoretical model vehicle at typical highway speeds may be increased by as much as four times.