143 resultados para circular waveguide photodetector
Resumo:
This paper demonstrates on chip sub bandgap detection of light at 1550 nm wavelength using the configuration of interleaved PN junctions along a silicon waveguide. The device operates under reverse bias in a nearly fully depleted mode, thus minimizing the free carrier plasma losses and significantly increases the detection volume at the same time. Furthermore, substantial enhancement in responsivity is observed by the transition from reverse bias to avalanche breakdown regime. The observed high responsivity of up to 7.2 mA/W at 3 V is attributed to defect assisted photogeneration, where the defects are related to the surface and the bulk of the waveguide. © 2014 AIP Publishing LLC.
Resumo:
We demonstrate the design, fabrication and experimental characterization of submicron-scale silicon waveguide fabricated by local oxidation of silicon and provide guidelines for controlling its profile. Near field measurements shows submicron confinement of the optical mode. © 2010 Optical Society of America.
Resumo:
We demonstrate an on-chip all-optical broadband modulation of light in submicron silicon waveguide based on linear free carriers' absorption using side coupling configuration of a pump signal. © 2010 Optical Society of America.
Resumo:
Multimode polymer waveguide crossings exhibiting the lowest reported excess loss of 0.006dB/crossing and crosstalk values as low as -30dB are presented. Their potential for use in high-speed dense optical interconnection architectures is demonstrated. © 2007 Optical Society of America.
Resumo:
Mode-locked and single-longitudinal-mode waveguide lasers, manufactured by femtosecond laser writing in Er-Yb-doped phosphate glasses, are presented. Transform-limited 1.6-ps pulses and a cw output power exceeding 50 mW have been obtained in the two regimes. © 2007 Optical Society of America.
Resumo:
This paper describes part of the monitoring undertaken at Abbey Mills shaft F, one of the main shafts of Thames Water's Lee tunnel project in London, UK. This shaft, with an external diameter of 30 m and 73 m deep, is one of the largest ever constructed in the UK and consequently penetrates layered and challenging ground conditions (Terrace Gravel, London Clay, Lambeth Group, Thanet Sand Formation, Chalk Formation). Three out of the twenty 1-2 m thick and 84 m deep diaphragm wall panels were equipped with fibre optic instrumentation. Bending and circumferential hoop strains were measured using Brillouin optical time-domain reflectometry and analysis technologies. These measurements showed that the overall radial movement of the wall was very small. Prior to excavation during a dewatering trial, the shaft may have experienced three-dimensional deformation due to differential water pressures. During excavation, the measured hoop and bending strains of the wall in the chalk exceeded the predictions. This appears to be related to the verticality tolerances of the diaphragm wall and lower circumferential hoop stiffness of the diaphragm walls at deep depths. The findings from this case study provide valuable information for future deep shafts in London. © ICE Publishing: All rights reserved.