242 resultados para centrifuge decanter


Relevância:

20.00% 20.00%

Publicador:

Resumo:

An analysis is given of velocity and pressure-dependent sliding flow of a thin layer of damp granular material in a spinning cone. Integral momentum equations for steady state, axisymmetric flow are derived using a boundary layer approximation. These reduce to two coupled first-order differential equations for the radial and circumferential sliding velocities. The influence of viscosity and friction coefficients and inlet boundary conditions is explored by presentation of a range of numerical results. In the absence of any interfacial shear traction the flow would, with increasing radial and circumferential slip, follow a trajectory from inlet according to conservation of angular momentum and kinetic energy. Increasing viscosity or friction reduces circumferential slip and, in general, increases the residence time of a particle in the cone. The residence time is practically insensitive to the inlet velocity. However, if the cone angle is very close to the friction angle then the residence time is extremely sensitive to the relative magnitude of these angles. © 2011 Authors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An investigation into the seismic behaviour of municipal solidwaste (MSW) landfills by dynamic centrifuge testing was undertaken. This paper presents physical modelling of MSW landfills for dynamic centrifuge testing, with regard to the following research areas: 1. amplification characteristics of municipal solid waste; 2. tension induced in geomembranes placed on landfill slopes due to earthquake loading; 3. damage to landfill liners due to liquefaction of foundation soil. A model waste, that has engineering properties similar to MSW, is presented. A model geomembrane that can be used in centrifuge tests is also presented. Results of dynamic centrifuge tests with the model geomembrane showed that an earthquake loading induces additional permanent tension (∼25%) in the geomembrane. © 2006 Taylor & Francis Group, London.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The horizontal arching mechanism transfers horizontal earth pressures acting on flexible retaining wall panels to stiffer neighbouring elements via soil shear stresses. In this research, the horizontal arching mechanism and lateral displacements of fixed cantilever walls in a model basement are investigated using centrifuge tests. A series of six tests was carried out at 45 gravities where the panel widths and thicknesses around the model basement were varied, so that the effects of panel geometry and stiffness on horizontal arching could be studied. It is shown that panel crest displacements and base bending moments of the most flexible, narrow panels can be an order of magnitude smaller than conventional active earth pressure calculations would allow. It is suggested that the reduction of earth pressure acting on a panel is directly correlated to the mobilized soil shear strength and hence, soil shear strain. Earth pressure coefficients K are plotted against panel displacements normalized by the panel width, u/B, to simulate the reduction of K with increasing soil strain.An idealized K-u/B curve is introduced, characterised by a reference distortion (u/B) ref beyond which fully plastic soil arching can be inferred, and which is related to the corresponding reference shear strain γ ref at which soil strength is fully mobilized in element tests. © 2006 Taylor & Francis Group, London.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper provides a case study on the deepest excavation carried out so far in the construction of the metro network in Shanghai, which typically features soft ground. The excavation is 38 m deep with retaining walls 65 m deep braced by 9 levels of concrete props. To obtain a quick and rough prediction, two centrifuge model tests were conducted, in which one is for the 'standard' section with green field surrounding and the other with an adjacent piled building. The tests were carried out in a run-stop-excavation-run style, in which excavation was conducted manually. By analyzing the lateral wall displacement, ground deformation, bending moment and earth pressure, the test results are shown to be reasonably convincing and the design and construction were validated. Such industry orientated centrifuge modeling was shown to be useful in understanding the performance of geotechnical processes, especially when engineers lack relevant field experience. © 2010 Taylor & Francis Group, London.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Landslides occur both onshore and offshore, however little attention has been given to offshore landslides (submarine landslides). The unique characteristics of submarine landslides include large mass movements and long travel distances at very gentle slopes. Submarine landslides have significant impacts and consequences on offshore and coastal facilities. This paper presents data from a series of centrifuge tests simulating submarine landslide flows on a very gentle slope. Experiments were conducted at different gravity levels to understand the scaling laws involved in simulating submarine landslide flows through centrifuge modelling. The slope was instrumented with miniature sensors for measurements of pore pressure beneath the flow. A series of digital cameras were used to capture the flow in flight. The results provide a better understanding of the scaling laws that needs to be adopted for centrifuge experiments involving submarine landslide flows and gives an insight into the flow mechanisms. © 2010 Taylor & Francis Group, London.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Long-term settlement of tunnels has caused concerns about its influence on tunnel safety and serviceability. Aiming to investigate the long-term behaviour of tunnels against the background of Shanghai metro line, two cases of centrifuge modelling were conducted, with efforts to expose the mechanism affecting the consolidation of the ground. Evenly layered ground and transitional ground strata were set for each case separately and the settlement, lining load and pore water pressure were checked against elapsed time up to 20 years. The results verified some previous findings concerning the settlement and lining load development trend, however, it was also shown that the transitional ground made the tunnel response more complicated. The research is expected to provide some basis for further research on other affecting factors, such as lining permeability. © 2010 Taylor & Francis Group, London.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the framework of the Italian research project ReLUIS-DPC, a set of centrifuge tests were carried out at the Schofield Centre in Cambridge (UK) to investigate the seismic behaviour of tunnels. Four samples of dry sand were prepared at different densities, in which a small scale model of circular tunnel was inserted, instrumented with gauges measuring hoop and bending strains. Arrays of accelerometers in the soil and on the box allowed the amplification of ground motion to be evaluated; LVDTs measured the soil surface settlement. This paper describes the main results of this research, showing among others the evolution of the internal forces during the model earthquakes at significant locations along the tunnel lining. © 2010 Taylor & Francis Group, London.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Particle Image Velocimetry (PIV) technique is an image processing tool to obtain instantaneous velocity measurements during an experiment. The basic principle of PIV analysis is to divide the image into small patches and calculate the locations of the individual patches in consecutive images with the help of cross correlation functions. This paper focuses on the application of the PIV analysis in dynamic centrifuge tests on small scale tunnels in loose, dry sand. Digital images were captured during the application of the earthquake loading on tunnel models using a fast digital camera capable of taking digital images at 1000 frames per second at 1 Megapixel resolution. This paper discusses the effectiveness of the existing methods used to conduct PIV analyses on dynamic centrifuge tests. Results indicate that PIV analysis in dynamic testing requires special measures in order to obtain reasonable deformation data. Nevertheless, it was possible to obtain interesting mechanisms regarding the behaviour of the tunnels from PIV analyses. © 2010 Taylor & Francis Group, London.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The response of surface structures to tunnelling induced ground movements is an area of great importance for any urban tunnelling project. Testing described in this paper aims to investigate soil structure interaction effects by observing the response of aluminium beams of varying stiffness to tunnelling, using the 8 m diameter beam centrifuge at Cambridge University. Soil and structure displacements are extensively monitored through a photo imaging technique which enables a detailed analysis of the interaction behaviour. Results to date indicate that the relative structure-soil stiffness is the governing factor in determining how a structure will respond to tunnelling. This parameter is highly dependent on both the structure and soil stiffness. It is also shown that contrary to common assumptions in the literature, negligible axial strains are transferred into the structure. This paper outlines the results of the research to date. © 2010 Taylor & Francis Group, London.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper presents centrifuge test data of the problem of tunnelling effects on buried pipelines and compares them to predictions made using DEM simulations. The paper focuses on the examination of pipeline bending moments, their distribution along the pipe, and their development with tunnel volume loss. Centrifuge results are obtained by PIV analysis and compared to results obtained using the DEM model. The DEM model was built to replicate the centrifuge model as closely as possible and included numerical features formulated specially for this task, such as structural elements to replicate the tunnel and pipeline. Results are extremely encouraging, with deviations between DEM and centrifuge test bending moment results being very small. © 2010 Taylor & Francis Group, London.