158 resultados para analytical approaches
Resumo:
This paper discusses the sustainability of two different approaches to upgrade water and sanitation infrastructure in Kenya's largest informal settlement, Kibera. A background to the urbanisation of poverty is outlined along with approaches to urban slums. Two case studies of completed interventions of infrastructure upgrading have been investigated. In one case study, the upgrading method driven by a non-government organisation uses an integrated livelihoods and partnership technique at community level to create an individual project. In the other case study, the method is a collaboration between the government and a multi-lateral agency to deliver upgraded services as part of a country-wide programme. The 'bottom-up' (project) and 'top-down' (programme) approaches both seek sustainability and aim to achieve this in the same context using different techniques. This paper investigates the sustainability of each approach. The merits and challenges of the approaches are discussed with the projected future of Kibera. The paper highlights the valuable opportunity for the role of appropriate engineering infrastructure for sustainable urban development, as well as the alleviation of poverty in a developing context.
Resumo:
The movement of chemicals through soil to groundwater is a major cause of degradation of water resources. In many cases, serious human and stock health implications are associated with this form of pollution. The study of the effects of different factors involved in transport phenomena can provide valuable information to find the best remediation approaches. Numerical models are increasingly being used for predicting or analyzing solute transport processes in soils and groundwater. This article presents the development of a stochastic finite element model for the simulation of contaminant transport through soils with the main focus being on the incorporation of the effects of soil heterogeneity in the model. The governing equations of contaminant transport are presented. The mathematical framework and the numerical implementation of the model are described. The comparison of the results obtained from the developed stochastic model with those obtained from a deterministic method and some experimental results shows that the stochastic model is capable of predicting the transport of solutes in unsaturated soil with higher accuracy than deterministic one. The importance of the consideration of the effects of soil heterogeneity on contaminant fate is highlighted through a sensitivity analysis regarding the variance of saturated hydraulic conductivity as an index of soil heterogeneity. © 2011 John Wiley & Sons, Ltd.
Resumo:
In this work, we present some approaches recently developed for enhancing light emission from Er-based materials and devices. We have investigated the luminescence quenching processes limiting quantum efficiency in light-emitting devices based on Si nanoclusters (Si nc) or Er-doped Si nc. It is found that carrier injection, while needed to excite Si nc or Er ions through electron-hole recombination, at the same time produces an efficient non-radiative Auger de-excitation with trapped carriers. A strong light confinement and enhancement of Er emission at 1.54 μm in planar silicon-on-insulator waveguides containing a thin layer (slot) of SiO2 with Er-doped Si nc at the center of the Si core has been obtained. By measuring the guided photoluminescence from the cleaved edge of the sample, we have observed a more than fivefold enhancement of emission for the transverse magnetic mode over the transverse electric one at room temperature. Slot waveguides have also been integrated with a photonic crystal (PhC), consisting of a triangular lattice of holes. An enhancement by more than two orders of magnitude of the Er near-normal emission is observed when the transition is in resonance with an appropriate mode of the PhC slab. Finally, in order to increase the concentration of excitable Er ions, a completely different approach, based on Er disilicate thin films, has been explored. Under proper annealing conditions crystalline and chemically stable Er2Si2O7 films are obtained; these films exhibit a strong luminescence at 1.54 μm owing to the efficient reduction of the defect density. © 2008 Elsevier B.V. All rights reserved.
Resumo:
Widespread approaches to fabricate surfaces with robust micro- and nanostructured topographies have been stimulated by opportunities to enhance interface performance by combining physical and chemical effects. In particular, arrays of asymmetric surface features, such as arrays of grooves, inclined pillars, and helical protrusions, have been shown to impart unique anisotropy in properties including wetting, adhesion, thermal and/or electrical conductivity, optical activity, and capability to direct cell growth. These properties are of wide interest for applications including energy conversion, microelectronics, chemical and biological sensing, and bioengineering. However, fabrication of asymmetric surface features often pushes the limits of traditional etching and deposition techniques, making it challenging to produce the desired surfaces in a scalable and cost-effective manner. We review and classify approaches to fabricate arrays of asymmetric 2D and 3D surface features, in polymers, metals, and ceramics. Analytical and empirical relationships among geometries, materials, and surface properties are discussed, especially in the context of the applications mentioned above. Further, opportunities for new fabrication methods that combine lithography with principles of self-assembly are identified, aiming to establish design principles for fabrication of arbitrary 3D surface textures over large areas. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
We present an analytical field-effect method to extract the density of subgap states (subgap DOS) in amorphous semiconductor thin-film transistors (TFTs), using a closed-form relationship between surface potential and gate voltage. By accounting the interface states in the subthreshold characteristics, the subgap DOS is retrieved, leading to a reasonably accurate description of field-effect mobility and its gate voltage dependence. The method proposed here is very useful not only in extracting device performance but also in physically based compact TFT modeling for circuit simulation. © 2012 IEEE.
Analytical formulation of directly modulated OOFDM signals transmitted over an IM/DD dispersive link
Resumo:
We develop a new formulation for the form-finding of tensegrity structures in which the primary variables are the Cartesian components of element lengths. Both an analytical and a numerical implementation of the formulation are described; each require a description of the connectivity of the tensegrity, with the iterative numerical method also requiring a random starting vector of member force densities. The analytical and numerical form-finding of tensegrity structures is demonstrated through six examples, and the results obtained are compared and contrasted with those available in the literature to verify the accuracy and viability of the suggested methods. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
A multivariate, robust, rational interpolation method for propagating uncertainties in several dimensions is presented. The algorithm for selecting numerator and denominator polynomial orders is based on recent work that uses a singular value decomposition approach. In this paper we extend this algorithm to higher dimensions and demonstrate its efficacy in terms of convergence and accuracy, both as a method for response suface generation and interpolation. To obtain stable approximants for continuous functions, we use an L2 error norm indicator to rank optimal numerator and denominator solutions. For discontinous functions, a second criterion setting an upper limit on the approximant value is employed. Analytical examples demonstrate that, for the same stencil, rational methods can yield more rapid convergence compared to pseudospectral or collocation approaches for certain problems. © 2012 AIAA.
Resumo:
The vibration behavior of piled foundations is an important consideration in fields such as earthquake engineering, construction, machine-foundation design, offshore structures, nuclear energy, and road and rail development. This paper presents a review of the past 40 years' literature on modeling the frequency-dependent behavior of pile foundations. Beginning with the earliest model of a single pile, adapted from those for embedded footings, it charts the development of the four pile-modeling techniques: the "dynamic Winkler-foundation" approach that uses springs to represent the effect of the soil; elasticcontinuum-type formulations involving the analytical solutions for displacements due to a subsurface disk, cylinder, or other element; boundary element methods; and dynamic finite-element formulations with special nonreflecting boundaries. The modeling of pile groups involves accounting for pile-soil-pile interactions, and four such methods exist: interaction factors; complete pile models; the equivalent pier method; and periodic structure theory. Approaches for validating pile models are also explored. Copyright © 2013 by ASME.
Resumo:
This paper studies the low frequency vibrational behaviour of a submerged hull. The submerged hull is modelled as a finite fluid-loaded cylindrical shell closed at each end by circular plates. The external pressure acting on the hull due to the fluid loading is analytically calculated using an infinite model. Three excitation cases of the hull are considered. In the first model, an axial point force is applied at the centre of one end plate, giving rise to an axisymmetric case in which only the zeroth circumferential shell modes are excited. In the second model, an axial point force is applied at the edge of the end plate. In the third model, a radial point force is applied also at the edge of the end plate. In the second and third load cases, all cylindrical shell circumferential modes are excited. The effects of fluid loading and different excitation locations are studied. A more complex hull model including stiffeners and bulkheads is then examined. A smeared approach is used to analytically model the ring stiffeners. All load cases are again considered and the effects of the various influencing factors on the low frequency responses are described.
Resumo:
Purpose - This paper compares CSR strategy, stakeholder engagement and overseas approaches of six leading companies which have large potential environmental and social impacts, influential stakeholders and notable CSR actions. Design/methodology/approach - It is an exploratory survey based on interviews of senior executives from British and Brazilian companies operating in the steel, petroleum and retail sectors and makes comparisons between and within them. Findings - British companies interviewed are more rule-based, adopt an implicit CSR approach; react to stakeholder’s demands based on moral motives and focus on environmental issues. The Brazilian companies, reviewed in this study, adopt an explicit CSR approach, have relational motives to engage with stakeholders and are more concerned with building a responsible image and narrowing social gaps. Research limitations/implications - The survey is based on perceptions of senior executives interviewed which may or may not correspond to actual practices. The sample size restricts generalization of results and specific firms interviewed may not represent the prevailing CSR business strategy in their respective countries. Practical implications - British companies can learn from the Brazilian experience how to become more innovative in a broader approach to CSR. Brazil should reinforce its legal framework to provide a more systematic and rule-based approach to CSR close to the UK experience. Originality/value - The way CSR is conceived and implemented depends on the ethical, socioeconomic, legal and institutional environment of the country in which the firm operates
Resumo:
Infrastructure project sustainability assessment typically entails the use of specialised assessment tools to measure and rate project performance against a set of criteria. This paper looks beyond the prevailing approaches to sustainability assessments and explores sustainability principles in terms of project risks and opportunities. Taking a risk management approach to applying sustainability concepts to projects has the potential to reconceptualise decision structures for sustainability from bespoke assessments to becoming a standard part of the project decisionmaking process. By integrating issues of sustainability into project risk management for project planning, design and construction, sustainability is considered within a more traditional business and engineering language. Currently, there is no widely practised approach for objectively considering the environmental and social context of projects alongside the more traditional project risk assessments of time, cost and quality. A risk-based approach would not solve all the issues associated with existing sustainability assessments but it would place sustainability concerns alongside other key risks and opportunities, integrating sustainability with other project decisions.