157 resultados para ZnO Thin Films


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this letter we report a facile one-pot synthesis of intercalated ZnO particles for inexpensive, low-temperature solution processed dye-sensitised solar cells. High interconnectivity facilitates enhanced charge transfer between the ZnO nanoparticles and a consequent enhancement in cell efficiency. ZnO thin films were formed from a wide range of nanoparticle diameters which simultaneously increased optical scattering whilst enhancing dye loading. A possible growth mechanism was proposed for the synthesis of ZnO nanoparticles. The intercalated ZnO nanoparticle thin films were integrated into the photoanodes of dye-sensitised solar cells which showed an increase in performance of 37% compared to structurally equivalent cells employing ZnO nanowires. © 2012 Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

α-(Yb1-xErx)2Si2O7 thin films on Si substrates were synthesized by magnetron co-sputtering. The optical emission from Er3+ ions has been extensively investigated, evidencing the very efficient role of Yb-Er coupling. The energy-transfer coefficient was evaluated for an extended range of Er content (between 0.2 and 16.5 at.%) reaching a maximum value of 2 × 10⁻¹⁶ cm⁻³s⁻¹. The highest photoluminescence emission at 1535 nm is obtained as a result of the best compromise between the number of Yb donors (16.4 at.%) and Er acceptors (1.6 at.%), for which a high population of the first excited state is reached. These results are very promising for the realization of 1.54 μm optical amplifiers on a Si platform.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Y2-x Erx O3 thin films, with x varying between 0 and 0.72, have been successfully grown on crystalline silicon (c-Si) substrates by radio-frequency magnetron cosputtering of Y2 O 3 and Er2 O3 targets. As-deposited films are polycrystalline, showing the body-centered cubic structure of Y2 O3, and show only a slight lattice parameter contraction when x is increased, owing to the insertion of Er ions. All the films exhibit intense Er-related optical emission at room temperature both in the visible and infrared regions. By studying the optical properties for different excitation conditions and for different Er contents, all the mechanisms (i.e., cross relaxations, up-conversions, and energy transfers to impurities) responsible for the photoluminescence (PL) emission have been identified, and the existence of two different well-defined Er concentration regimes has been demonstrated. In the low concentration regime (x up to 0.05, Er-doped regime), the visible PL emission reaches its highest intensity, owing to the influence of up-conversions, thus giving the possibility of using Y2-x Er x O3 films as an up-converting layer in the rear of silicon solar cells. However, most of the excited Er ions populate the first two excited levels 4I11/2 and 4I13/2, and above a certain excitation flux a population inversion condition between the former and the latter is achieved, opening the route for the realization of amplifiers at 2.75 μm. Instead, in the high concentration regime (Er-compound regime), an increase in the nonradiative decay rates is observed, owing to the occurrence of cross relaxations or energy transfers to impurities. As a consequence, the PL emission at 1.54 μm becomes the most intense, thus determining possible applications for Y2-x Erx O 3 as an infrared emitting material. © 2009 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stoichiometric Er silicate thin films, monosilicate (Er2SiO 5) and disilicate (Er2Si2O7), have been grown on c-Si substrates by rf magnetron sputtering. The influence of annealing temperature in the range 1000-1200 °C in oxidizing ambient (O 2) on the structural and optical properties has been studied. In spite of the known reactivity of rare earth silicates towards silicon, Rutherford backscattering spectrometry shows that undesired chemical reactions between the film and the substrate can be strongly limited by using rapid thermal treatments. Monosilicate and disilicate films crystallize at 1100 and 1200 °C, respectively, as shown by x-ray diffraction analysis; the crystalline structures have been identified in both cases. Moreover, photoluminescence (PL) measurements have demonstrated that the highest PL intensity is obtained for Er2Si2O7 film annealed at 1200 °C. In fact, this treatment allows us to reduce the defect density in the film, in particular by saturating oxygen vacancies, as also confirmed by the increase of the lifetime of the PL signal. © 2008 IOP Publishing Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report the effects of thermal annealing performed in N2 or O2 ambient at 1200 °C on the structural and optical properties of Er silicate films having different compositions (Er2Si O 5,Er2 Si2 O7, and their mixture). We demonstrate that the chemical composition of the stoichiometric films is preserved after the thermal treatments. All different crystalline structures formed after the thermal annealing are identified. Thermal treatments in O 2 lead to a strong enhancement of the photoluminescence intensity, owing to the efficient reduction of defect density. In particular the highest optical efficiency is associated to Er ions in the α phase of Er 2 Si2 O7. © 2008 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have studied the structure and the room temperature luminescence of erbium silicate thin films deposited by rf magnetron sputtering. Films deposited on silicon oxide layers are characterized by good structural properties and excellent stability. The optical properties of these films are strongly improved by rapid thermal annealing processes performed in the range of temperature 800-1250 °C. In fact through the reduction of the defect density of the material, a very efficient room temperature photoluminescence at 1535 nm is obtained. We have also investigated the influence of the annealing ambient, by finding that treatments in O2 atmosphere are significantly more efficient in improving the optical properties of the material with respect to processes in N2. Upconversion effects become effective only when erbium silicate is excited with high pump powers. The evidence that all Er atoms (about 1022 cm-3) in erbium silicate films are optically active suggests interesting perspectives for optoelectronic applications of this material. © 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report about the magnetoresistive properties of calcium-doped lanthanum manganate thin films grown by RF magnetron sputtering on single crystalline LaAlO3 and MgO substrates. Two orientations of the magnetic field with respect to the electrical current have been studied: (i) magnetic field in the plane of the film and parallel to the electrical current, and (ii) magnetic field perpendicular to the plane of the film. The film grown on LaAlO 3 is characterised by an unusual magnetoresistive behaviour when the magnetic field is applied perpendicular to the film plane: the appearance of two bumps in the field dependence of the resistance is shown to be related to the occurrence of anisotropic magnetoresistive effects in manganate films. © 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Smooth and continuous ZnO films consisting of densely packed ZnO nanorods (NRs), which can be used for electronic device fabrication, were synthesized using a hydro-thermo-chemical solution deposition method. Such devices would have the novelty of high performance, benefiting from the inherited unique properties of the nanomaterials, and can be fabricated on these smooth films using a conventional, low cost planar process. Photoluminescence measurements showed that the NR films have much stronger shallow donor to valence band emissions than those from discrete ZnO NRs, and hence have the potential for the development of ZnO light emission diodes and lasers, etc. The NR films have been used to fabricate large area surface acoustic wave devices by conventional photolithography. These demonstrated two well-defined resonant peaks and their potential for large area device applications. The chemical solution deposition method is simple, reproducible, scalable and economic. These NR films are suitable for large scale production on cost-effective substrates and are promising for various fields such as sensing systems, renewable energy and optoelectronic applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As a means of characterizing the diffusion parameters of fiber reinforced polymer (FRP) composites within a relatively short time frame, the potential use of short term tests on epoxy films to predict the long-term behavior is investigated. Reference is made to the literature to assess the effectiveness of Fickian and anomalous diffusion models to describe solution uptake in epoxies. The influence of differing exposure conditions on the diffusion in epoxies, in particular the effect of solution type and temperature, are explored. Experimental results, where the solution uptake in desiccated (D) or undesiccated (U) thin films of a commercially available epoxy matrix subjected to water (W), salt water (SW), or alkali concrete pore solution (CPS) at either 20 or 60°C, are also presented. It was found that the type of solution did not significantly influence the diffusion behavior at 20°C and that the mass uptake profile was anomalous. Exposure to 60°C accelerated the initial diffusion behavior and appeared to raise the level of saturation. In spite of the accelerated approach, conclusive values of uptake at saturation remained elusive even at an exposure period of 5 years. This finding questions the viability of using short-term thin film results to predict the long-term mechanical performance of FRP materials. © 2013 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Significant reduction of the bulk resistivity in a ferroelectric Pb(Zr 0.45Ti0.55)O3 thin film is observed before the remnant polarization started to decrease noticeably at the onset of its fatigue switching process. It is associated with the increase of charge carriers within the central bulk region of the film. The decrease of bulk resistivity would result in the increase of Joule heating effect, improving the temperature of the thin film, which is evaluated by the heat conduction analysis. The Joule heating effect in turn accelerates the polarization reduction, i.e. fatigue. Enhancing the heat dissipation of a ferroelectric capacitor is shown to be able to improve the device's fatigue endurance effectively. © 2013 Chinese Physical Society and IOP Publishing Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The residual stresses in Pb(Zr0.3Ti0.7)O3 thin films were measured by the sin2 Ψ method using the normal X-ray incidence. The spacing of different planes (hkl) parallel to the film surface were converted to the spacing of a set of inclined planes (100). The angles between (100) and (hkl) were equivalent to the tilting angles of (100) from the normal of film surface. The residual stresses were extracted from the linear slope of the strain difference between the equivalent inclined direction and normal direction with respect to the sin2 Ψ. The results were in consistency with that derived from the conventional sin2 Ψ method. © 2013 The Japan Society of Applied Physics.