160 resultados para Voltage ripples
Resumo:
With series insulated-gate bipolar transistor (IGBT) operation, well-matched gate drives will not ensure balanced dynamic voltage sharing between the switching devices. Rather, it is IGBT parasitic capacitances, mainly gate-to-collector capacitance Cgc, that dominate transient voltage sharing. As Cgc is collector voltage dependant and is significantly larger during the initial turn-off transition, it dominates IGBT dynamic voltage sharing. This paper presents an active control technique for series-connected IGBTs that allows their dynamic voltage transition dV\ce/dt to adaptively vary. Both switch ON and OFF transitions are controlled to follow a predefined dVce/dt. Switching losses associated with this technique are minimized by the adaptive dv /dt control technique incorporated into the design. A detailed description of the control circuits is presented in this paper. Experimental results with up to three series devices in a single-ended dc chopper circuit, operating at various low voltage and current levels, are used to illustrate the performance of the proposed technique. © 2012 IEEE.
Resumo:
This paper presents the use of an Active Voltage Control (AVC) technique for balancing the voltages in a series connection of Insulated Gate Bipolar Transistors (IGBTs). The AVC technique can control the switching trajectory of an IGBT according to a pre-set reference signal. In series connections, every series connected IGBT follows the reference and so that the dynamic voltage sharing is achieved. For the static voltage balancing, a temporary clamp technique is introduced. The temporary clamp technique clamps the collector-emitter voltage of all the series connected IGBTs at the ideal voltage so that the IGBTs will share the voltage evenly. © 2012 IEEE.
Resumo:
High-power converters usually need longer dead-times than their lower-power counterparts and a lower switching frequency. Also due to the complicated assembly layout and severe variations in parasitics, in practice the conventional dead-time specific adjustment or compensation for high-power converters is less effective, and usually this process is time-consuming and bespoke. For general applications, minimising or eliminating dead-time in the gate drive technology is a desirable solution. With the growing acceptance of power electronics building blocks (PEBB) and intelligent power modules (IPM), gate drives with intelligent functions are in demand. Smart functions including dead time elimination/minimisation can improve modularity, flexibility and reliability. In this paper, a dead-time minimisation using Active Voltage Control (AVC) gate drive is presented. © 2012 IEEE.
Resumo:
The three-dimensional spatial distribution of Al in the high-k metal gates of metal-oxide-semiconductor field-effect-transistors is measured by atom probe tomography. Chemical distribution is correlated with the transistor voltage threshold (VTH) shift generated by the introduction of a metallic Al layer in the metal gate. After a 1050 °C annealing, it is shown that a 2-Å thick Al layer completely diffuses into oxide layers, while a positive VTH shift is measured. On the contrary, for thicker Al layers, Al precipitation in the metal gate stack is observed and the VTH shift becomes negative. © 2012 American Institute of Physics.
Resumo:
The brushless doubly fed induction generator (BDFIG) shows commercial promise for wind power generation due to its lower cost and higher reliability when compared with the conventional DFIG. In the most recent grid codes, wind generators are required to be able to ride through a low-voltage fault and meet the reactive current demand from the grid. A low-voltage ride-through (LVRT) capability is therefore important for wind generators which are integrated into the grid. In this paper, the authors propose a control strategy enabling the BDFIG to successfully ride through a symmetrical voltage dip. The control strategy has been implemented on a 250-kW BDFIG, and the experimental results indicate that the LVRT is possible without a crowbar. © 1982-2012 IEEE.
High-Performance, Low-Operating-Voltage Organic Field-Effect Transistors with Low Pinch-Off Voltages
Resumo:
In this letter, we use a novel 3-D model, earlier calibrated with experimental results on standard gate commutated thyristors (GCTs), with the aim to explain the physics behind the high-power technology (HPT) GCT, to investigate what impact this design would have on 24 mm diameter GCTs, and to clarify the mechanisms that limit safe switching at different dc-link voltages. The 3-D simulation results show that the HPT design can increase the maximum controllable current in 24 mm diameter devices beyond the realm of GCT switching, known as the hard-drive limit. It is proposed that the maximum controllable current becomes independent of the dc-link voltage for the complete range of operating voltage. © 1980-2012 IEEE.
Resumo:
Compared with the Doubly fed induction generators (DFIG), the brushless doubly fed induction generator (BDFIG) has a commercial potential for wind power generation due to its lower cost and higher reliability. In the most recent grid codes, wind generators are required to be capable of riding through low voltage faults. As a result of the negative sequence, induction generators response differently in asymmetrical voltage dips compared with the symmetrical dip. This paper gave a full behavior analysis of the BDFIG under different types of the asymmetrical fault and proposed a novel control strategy for the BDFIG to ride through asymmetrical low voltage dips without any extra hardware such as crowbars. The proposed control strategies are experimentally verified by a 250-kW BDFIG. © 2012 IEEE.
Resumo:
Significant improvements in the spatial and temporal uniformities of device switching parameters are successfully demonstrated in Ge/TaOx bilayer-based resistive switching devices, as compared with non-Ge devices. In addition, the reported Ge/TaOx devices also show significant reductions in the operation voltages. Influence of the Ge layer on the resistive switching of TaOx-based resistive random access memory is investigated by X-ray spectroscopy and the theory of Gibbs free energy. Higher uniformity is attributed to the confinement of the filamentary switching process. The presence of a larger number of interface traps, which will create a beneficial electric field to facilitate the drift of oxygen vacancies, is believed to be responsible for the lower operation voltages in the Ge/TaO x devices. © 1980-2012 IEEE.
Resumo:
The behavior of the drain voltage rise of the Lateral IGBT during inductive turn-off is studied in detail. Numerical simulations show that, if compared with the well known vertical IGBT, the Lateral IGBT presents a differences in the on-state stored charge and in the growth of the depleted region that result in a different drain voltage rise. In this paper a complete model for the voltage rise is devised through an accurate calculation of the equivalent output capacitance. The model is in excellent agreement with two-dimensional simulations. Further, the paper shows that previously proposed models, which targeted the vertical IGBT, are not adequate for the description of the turn-off voltage rise in the Lateral IGBT. © Springer Science + Business Media LLC 2006.