208 resultados para Tomografía computada volumétrica Cone-Beam
Resumo:
Advances in the dual electron-beam recrystallization technique arising from the fast scanning of a line beam parallel to the edges of narrow seeding windows are described. The resultant recrystallized layers are essentially defect-free, have good surface flatness, and cover large areas.
Resumo:
The crystal quality of 0.3-μm-thick as-grown epitaxial silicon-on-sapphire (SOS) was improved using solid-phase epitaxy (SPE) by implantation with silicon to 1015 ions/cm2 at 175 keV and rapid annealing using electron-beam heating, n-channel and p-channel transistormobilities increased by 31 and 19 percent, respectively, and a reduction in ring-oscillator stage delay confirmed that crystal defects near the upper silicon surface had been removed. Leakage in n-channel transistors was not significantly affected by the regrowth process but for p-channel transistors back-channel leakage was considerably greater than for the control devices. This is attributed to aluminum released by damage to the sapphire during silicon implantation. © 1985 IEEE
Resumo:
This paper outlines the development of the electron beam recrystallization approach to the formation of silicon-on-insulator layers. The technique of recrystallizing seeded layers by a line electron beam has been widely adopted. Present practice in electron beam recrystallization is reviewed, both from materials and process points of view. Applications of silicon-on-insulator substrates formed in this way are described, particularly in three-dimensional integration. © 1988.
Resumo:
A dynamic beam propagation model allows design optimization of high power low divergence tapered waveguide lasers. The model is extended to include spatially-resolved temperature profiles and a temperature dependent gain. Using this model, design parameters such as the optimum facet reflectivity, taper angle, and waveguide dimension can be calculated for low far-field divergence and high continuous wave power.