187 resultados para Thin film morphologies
Resumo:
Stress/recovery measurements demonstrate that even highperformance passivated In-Zn-O/ Ga-In-Zn-O thin film transistors with excellent in-dark stability suffer from light-bias induced threshold voltage shift (ΔV T) and defect density changes. Visible light stress leads to ionisation of oxygen vacancy sites, causing persistent photoconductivity. This makes the material act as though it was n-doped, always causing a negative threshold voltage shift under strong illumination, regardless of the magnitude and polarity of the gate bias. © 2011 SID.
Resumo:
Thin film bulk acoustic wave resonator (FBAR) devices supporting simultaneously multiple resonance modes have been designed for gravimetric sensing. The mechanism for dual-mode generation within a single device has been discussed, and theoretical calculations based on finite element analysis allowed the fabrication of FBARs whose resonance modes have opposite reactions to temperature changes; one of the modes exhibiting a positive frequency shift for a rise of temperature whilst the other mode exhibits a negative shift. Both modes exhibit negative frequency shift for a mass load and hence by monitoring simultaneously both modes it is possible to distinguish whether a change in the resonance frequency is due to a mass load or temperature variation (or a combination of both), avoiding false positive/negative responses in gravimetric sensing without the need of additional reference devices or complex electronics. © 2012 Elsevier B.V.
Resumo:
A superconducting fault current limiter (SFCL) for 6.6 kV and 400 A installed in a cubicle for a distribution network substation was conceptually designed. The SFCL consists of parallel- and series-connected superconducting YBCO elements and a limiting resistor. Before designing the SFCL, some tests were carried out. The width and length of each element used in the tests are 30 mm and 210 mm, respectively. The element consists of YBCO thin film of about 200 nm in thickness on cerium dioxide (CeO2) as a cap-layer on a sapphire substrate by metal-organic deposition with a protective metal coat. In the tests, characteristics of each element, such as over-current, withstand-voltage, and so on, were obtained. From these characteristics, series and parallel connections of the elements, called units, were considered. The characteristics of the units were obtained by tests. From the test results, a single phase prototype SFCL was manufactured and tested. Thus, an SFCL rated at 6.6 kV and 400 A can be designed. © 2009 IEEE.
Resumo:
A circular-type magnetic flux pump (CTMFP) device was built to study the flux dynamics on a 2-inch-diameter YBCO thin film. This CTMFP is composed of two CTMFP coils, with each CTMFP coil containing concentric three-phase windings and a dc winding. We connected the three-phase windings to the output of a commercial inverter. By changing the output frequency of the inverter, the sweeping speed of the circular-shaped travelling magnetic wave can be changed. The connection of the phase coils follows the forward consequence, so that the circular-shaped travelling magnetic wave travels inward to the center. The output frequency f was changed from f = 0.01 to 1000.0 Hz. The YBCO sample was sandwiched between the two CTMFP coils to experience the circular-shaped travelling magnetic wave. It was found that the increase of the flux density in the center of the film is independent of the sweeping frequency. In high frequency f = 1000.0Hz, even if the waveform had changed a lot, the increment is still the same as in low frequencies. © 2012 IEEE.
Resumo:
Heterojunction is an important structure for the development of photovoltaic solar cells. In contrast to homojunction structures, heterojunction solar cells have internal crystalline interfaces, which will reflect part of the incident light, and this has not been considered carefully before though many heterostructure solar cells have been commercialized. This paper discusses the internal reflection for various material systems used for the development of heterostructure-based solar cells. It has been found that the most common heterostructure solar cells have internal reflection less than 2%, while some potential heterojunction solar cells such as ITO/GaAs, ITO/InP, Si/Ge, polymer/semiconductors and oxide semiconductors may have internal reflection as high as 20%. Also it is worse to have a window layer with a lower refractive index than the absorption layer for solar cells. Ignoring this strong internal reflection will lead to severe deterioration and reduction of conversion efficiency; therefore measures have to be taken to minimize or prevent this internal reflection. © 2013 Elsevier B.V.
Resumo:
Organic thin-film transistors based on polycrystalline copper phthalocyanine (CuPc) were fabricated by using poly(vinyl alcohol) as gate dielectric. After treatment of the gate dielectric using an octadecyltrichlorosilane self-assembled monolayer, a mobility of up to 0.11 cm2/V∈s was achieved, which is comparable to that of single-crystal CuPc devices (0.1-1 cm2/V∈s). The surface morphology was analyzed and the possible reasons for the enhanced mobility are discussed. © 2009 Springer-Verlag.
Resumo:
It is widely reported that threshold voltage and on-state current of amorphous indium-gallium-zinc-oxide bottom-gate thin-film transistors are strongly influenced by the choice of source/drain contact metal. Electrical characterisation of thin-film transistors indicates that the electrical properties depend on the type and thickness of the metal(s) used. Electron transport mechanisms and possibilities for control of the defect state density are discussed. Pilling-Bedworth theory for metal oxidation explains the interaction between contact metal and amorphous indium-gallium-zinc-oxide, which leads to significant trap formation. Charge trapping within these states leads to variable capacitance diode-like behavior and is shown to explain the thin-film transistor operation. © 2013 AIP Publishing LLC.
Resumo:
Contact resistance has a significant impact on the electrical characteristics of thin film transistors. It limits their maximum on-current and affects their subsequent behavior with bias. This distorts the extracted device parameters, in particular, the field-effect mobility. This letter presents a method capable of accounting for both the non-ohmic (nonlinear) and ohmic (linear) contact resistance effects solely based upon terminal I-V measurements. Applying our analysis to a nanocrystalline silicon thin film transistor, we demonstrate that contact resistance effects can lead to a twofold underestimation of the field-effect mobility. © 2008 American Institute of Physics.
Resumo:
We present an analytical field-effect method to extract the density of subgap states (subgap DOS) in amorphous semiconductor thin-film transistors (TFTs), using a closed-form relationship between surface potential and gate voltage. By accounting the interface states in the subthreshold characteristics, the subgap DOS is retrieved, leading to a reasonably accurate description of field-effect mobility and its gate voltage dependence. The method proposed here is very useful not only in extracting device performance but also in physically based compact TFT modeling for circuit simulation. © 2012 IEEE.