142 resultados para SCHIZOPHRENIA-LIKE PSYCHOSIS
Resumo:
IMPORTANCE: Forward models predict the sensory consequences of planned actions and permit discrimination of self- and non-self-elicited sensation; their impairment in schizophrenia is implied by an abnormality in behavioral force-matching and the flawed agency judgments characteristic of positive symptoms, including auditory hallucinations and delusions of control. OBJECTIVE: To assess attenuation of sensory processing by self-action in individuals with schizophrenia and its relation to current symptom severity. DESIGN, SETTING, AND PARTICIPANTS: Functional magnetic resonance imaging data were acquired while medicated individuals with schizophrenia (n = 19) and matched controls (n = 19) performed a factorially designed sensorimotor task in which the occurrence and relative timing of action and sensation were manipulated. The study took place at the neuroimaging research unit at the Institute of Cognitive Neuroscience, University College London, and the Maudsley Hospital. RESULTS: In controls, a region of secondary somatosensory cortex exhibited attenuated activation when sensation and action were synchronous compared with when the former occurred after an unexpected delay or alone. By contrast, reduced attenuation was observed in the schizophrenia group, suggesting that these individuals were unable to predict the sensory consequences of their own actions. Furthermore, failure to attenuate secondary somatosensory cortex processing was predicted by current hallucinatory severity. CONCLUSIONS AND RELEVANCE: Although comparably reduced attenuation has been reported in the verbal domain, this work implies that a more general physiologic deficit underlies positive symptoms of schizophrenia.
Resumo:
We demonstrate the design, fabrication and experimental characterization of a submicron-scale silicon waveguide that is fabricated by local oxidation of silicon. The use of local oxidation process allows defining the waveguide geometry and obtaining smooth sidewalls. The process can be tuned to precisely control the shape and the dimensions of the waveguide. The fabricated waveguides are measured using near field scanning optical microscope at 1550 nm wavelength. These measurements show mode width of 0.4 µm and effective refractive index of 2.54. Finally, we demonstrate the low loss characteristics of our waveguide by imaging the light scattering using an infrared camera.
Resumo:
Endothelial filopodia play key roles in guiding the tubular sprouting during angiogenesis. However, their dynamic morphological characteristics, with the associated implications in cell motility, have been subjected to limited investigations. In this work, the interaction between endothelial cells and extracellular matrix fibrils was recapitulated in vitro, where a specific focus was paid to derive the key morphological parameters to define the dynamics of filopodium-like protrusion during cell motility. Based on one-dimensional gelatin fibrils patterned by near-field electrospinning (NFES), we study the response of endothelial cells (EA.hy926) under normal culture or ROCK inhibition. It is shown that the behaviour of temporal protrusion length versus cell motility can be divided into distinct modes. Persistent migration was found to be one of the modes which permitted cell displacement for over 300 μm at a speed of approximately 1 μm min-1. ROCK inhibition resulted in abnormally long protrusions and diminished the persistent migration, but dramatically increased the speeds of protrusion extension and retraction. Finally, we also report the breakage of protrusion during cell motility, and examine its phenotypic behaviours. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Resumo:
Compliant elements in the leg musculoskeletal system appear to be important not only for running but also for walking in human locomotion as shown in the energetics and kinematics studies of spring-mass model. While the spring-mass model assumes a whole leg as a linear spring, it is still not clear how the compliant elements of muscle-tendon systems behave in a human-like segmented leg structure. This study presents a minimalistic model of compliant leg structure that exploits dynamics of biarticular tension springs. In the proposed bipedal model, each leg consists of three leg segments with passive knee and ankle joints that are constrained by four linear tension springs. We found that biarticular arrangements of the springs that correspond to rectus femoris, biceps femoris and gastrocnemius in human legs provide self-stabilizing characteristics for both walking and running gaits. Through the experiments in simulation and a real-world robotic platform, we show how behavioral characteristics of the proposed model agree with basic patterns of human locomotion including joint kinematics and ground reaction force, which could not be explained in the previous models.
Resumo:
Conventional models of bipedal walking generally assume rigid body structures, while elastic material properties seem to play an essential role in nature. On the basis of a novel theoretical model of bipedal walking, this paper investigates a model of biped robot which makes use of minimum control and elastic passive joints inspired from the structures of biological systems. The model is evaluated in simulation and a physical robotic platform by analyzing the kinematics and ground reaction force. The experimental results show that, with a proper leg design of passive dynamics and elasticity, an attractor state of human-like walking gait patterns can be achieved through extremely simple control without sensory feedback. The detailed analysis also explains how the dynamic human-like gait can contribute to adaptive biped walking. © 2007 Elsevier B.V. All rights reserved.
Resumo:
We demonstrate the design, fabrication and experimental characterization of submicron-scale silicon waveguide fabricated by local oxidation of silicon and provide guidelines for controlling its profile. Near field measurements shows submicron confinement of the optical mode. © 2010 Optical Society of America.
Resumo:
Conventional models of bipedal walking generally assume rigid body structures, while elastic material properties seem to play an essential role in nature. On the basis of a novel theoretical model of bipedal walking, this paper investigates a model of biped robot which makes use of minimum control and elastic passive joints inspired from the structures of biological systems. The model is evaluated in simulation and a physical robotic platform with respect to the kinematics and the ground reaction force. The experimental results show that the behavior of this simple locomotion model shows a considerable similarity to that of human walking. © 2006 The authors.