180 resultados para Nakagami-m fading channel


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A combination of multilevel coding schemes and simple two-channel wavelength division multiplexing (WDM) at 1300 and 1550 nm was used to transmit an aggregate of 10 Gbit/s over 300 m of multimode fiber that is typical of that employed in current Local Area Networks (LANs). It was shown that this technique could be a simple solution for achieving 10 Gigabit ethernet links over installed multimode fiber building backbones.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A method to fabricate polymer field-effect transistors with submicron channel lengths is described. A thin polymer film is spin coated on a prepatterned resist with a low resolution to create a thickness contrast in the overcoated polymer layer. After plasma and solvent etching, a submicron-sized line structure, which templates the contour of the prepattern, is obtained. A further lift-off process is applied to define source-drain electrodes of transistors. With a combination of ink-jet printing, transistors with channel length down to 400 nm have been fabricated by this method. We show that drive current density increases as expected, while the on/off current ratio 106 is achieved. © 2005 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report high hole and electron mobilities in nanocrystalline silicon (nc-Si:H) top-gate staggered thin-film transistors (TFTs) fabricated by direct plasma-enhanced chemical vapor deposition (PECVD) at 260°C. The n-channel nc-Si:H TFT with n+ nc-Si:H ohmic contacts shows a field-effect electron mobility (μnFE) of 130 cm2/Vs, which increases to 150 cm2/Vs with Cr-silicide contacts, along with a field-effect hole mobility (μhFE) of 25 cm2/Vs. To the best of our knowledge, the hole and electron mobilities reported here are the highest achieved to date using direct PECVD. © 2005 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An experimental and numerical investigation into transonic shock/boundary-layer interactions in rectangular ducts has been performed. Experiments have shown that flow development in the corners of transonic shock/boundary-layer interactions in confined channels can have a significant impact on the entire flowfield. As shock strength is increased from M∞ = 1:3 to 1.5, the flowfield becomes very slightly asymmetrical. The interaction of corner flows with one another is thought to be a potential cause of this asymmetry. Thus, factors that govern the size of corner interactions (such as interaction strength) and their proximity to one another (such as tunnel aspect ratio) can affect flow symmetry. The results of the computational study show reasonable agreement with experiments, although simulations with particular turbulence models predict highly asymmetrical solutions for flows that were predominantly symmetrical in experiments. These discrepancies are attributed to the tendency of numerical schemes to overprediction corner-interaction size, and this also accounts for why computational fluid dynamics predicts the onset of asymmetry at lower shock strengths than in experiments. The findings of this study highlight the importance of making informed decisions about imposing artificial constraints on symmetry and boundary conditions for internal transonic flows. Future effort into modeling corner flows accurately is required. Copyright © 2011 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To support the development and analysis of engineering designs at the embodiment stage, designers work iteratively with representations of those designs as they consider the function and form of their constituent parts. Detailed descriptions of "what a machine does" usually include flows of forces and active principles within the technical system, and their localization within parts and across the interfaces between them. This means that a representation should assist a designer in considering form and function at the same time and at different levels of abstraction. This paper describes a design modelling approach that enables designers to break down a system architecture into its subsystems and parts, while assigning functions and flows to parts and the interfaces between them. In turn, this may reveal further requirements to fulfil functions in order to complete the design. The approach is implemented in a software tool which provides a uniform, computable language allowing the user to describe functions and flows as they are iteratively discovered, created and embodied. A database of parts allows the user to search for existing design solutions. The approach is illustrated through an example: modelling the complex mechanisms within a humanoid robot. Copyright © 2010 by ASME.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador: