143 resultados para Mathematic modulation
Resumo:
A technique enabling 10 Gbps data to be directly modulated onto a monolithic sub-THz dual laser transmitter is proposed. As a result of the laser chirp, the logical zeros of the resultant sub-THz signal have a different peak frequency from that of the logical ones. The signal extinction ratio is therefore enhanced by suppressing the logical zeros with a filter stage at the receiver. With the aid of the chirp-enhanced filtering, an improved extinction ratio can be achieved at moderate modulation current. Hence, 10 GHz modulation bandwidth of the transmitter is predicted without the need for external modulators. In this paper, we demonstrate the operational principle by generating an error-free (bit error rate less than 10-9) 100 Mbps Manchester encoded signal with a centre frequency of 12 GHz within the bandwidth of an envelope detector, whilst direct modulation of a 100 GHz signal at data rates of up to 10 Gbps is simulated by using a transmission line model. This work could be a key technique for enabling monolithic sub-THz transmitters to be readily used in high speed wireless links. © 2013 IEEE.
Resumo:
4 bps/Hz 40 Gb/s carrierless amplitude and phase (CAP) modulation is investigated for nextgeneration datacommunication links. The 40 Gb/s link achieves double the length of a conventional NRZ scheme, despite using a low-bandwidth source. © OSA/OFC/NFOEC 2011.
Resumo:
Carrierless amplitude and phase modulation for next-generation datacommunication links is considered for the first time. Low-cost implementation of a high-spectral-efficiency 10 Gb/s channel is demonstrated as a route to links at 40 Gb/s and beyond. © 2010 Optical Society of America.
Gigabit/s modulation of twin-electrode high-brightness tapered laser with high modulation efficiency
Resumo:
Simultaneous high modulation speed and high modulation efficiency operation of a two-electrode tapered laser is reported. 1Gb/s direct data modulation is achieved with 68mA applied current swing for a 0.95W output optical modulation amplitude. © 2009 Optical Society of America.
Resumo:
The first known experimental demonstrations of a 10 Gb/s hybrid CAP-2/QAM-2 and a 20 Gb/s hybrid CAP-4/QAM-4 transmitter/receiver-based optical data link are performed. Successful transmission over 4.3 km of standard single-mode fiber (SMF) is achieved, with a link power penalty ∼0.4 dBo for CAP-2/QAM-2 and ∼1.5 dBo for CAP-4/QAM-4 at BER=10(-9).
Resumo:
We demonstrate an on-chip all-optical broadband modulation of light in submicron silicon waveguide based on linear free carriers' absorption using side coupling configuration of a pump signal. © 2010 Optical Society of America.
Resumo:
100 Gb/s PAM4-CAP2 modulation is demonstrated for next-generation datacommunication links. Simulation studies indicate a power budget advantage of 2.5 dBo relative to PAM8 modulation. A real-time experimental demonstration is performed. © OSA 2014.
Resumo:
A new class of 16-ary Amplitude Phase Shift Keying (APSK) coded modulations deemed double-ring PSK modulations best suited for (satellite) nonlinear channels is proposed. Constellation parameters optimization has been based on geometric and information-theoretic considerations. Furthermore, pre- and post-compensation techniques to reduce the nonlinearity impact have been examined. Digital timing clock and carrier phase have been derived and analyzed for a Turbo coded version of the same new modulation scheme. Finally, the performance of state-of the art Turbo coded modulation for this new 16-ary digital modulation has been investigated and compared to the known TCM schemes. It is shown that for the same coding scheme, double-ring APSK modulation outperforms classical 16-QAM and 16-PSK over a typical satellite nonlinear channel due to its intrinsic robustness against the High Power Amplifier (HPA) nonlinear characteristics. The new modulation is shown to be power- and spectrally-efficient, with interesting applications to satellite communications. © 2002 by the American Institute of Aeronautics and Astronautics, Inc.