150 resultados para Finite Element Method (FEM)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Process simulation programs are valuable in generating accurate impurity profiles. Apart from accuracy the programs should also be efficient so as not to consume vast computer memory. This is especially true for devices and circuits of VLSI complexity. In this paper a remeshing scheme to make the finite element based solution of the non-linear diffusion equation more efficient is proposed. A remeshing scheme based on comparing the concentration values of adjacent node was then implemented and found to remove the problems of oscillation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gas hydrate is a crystalline solid found within marine and subpermafrost sediments. While the presence of hydrates can have a profound effect on sediment properties, the stress-strain behavior of hydrate-bearing sediments is poorly understood due to inherent limitations in laboratory testing. In this study, we use numerical simulations to improve our understanding of the mechanical behavior of hydrate-bearing sands. The hydrate mass is simulated as either small randomly distributed bonded grains or as "ripened hydrate" forming patchy saturation, whereby sediment clusters with 100% pore-filled hydrate saturation are distributed within a hydrate-free sediment. Simulation results reveal that reduced sand porosity and higher hydrate saturation cause an increase in stiffness, strength, and dilative tendency, and the critical state line shifts toward higher void ratio and higher shear strength. In particular, the critical state friction angle increases in sands with patchy saturation, while the apparent cohesion is affected the most when the hydrate mass is distributed in pores. Sediments with patchy hydrate distribution exhibit a slightly lower strength than sediments with randomly distributed hydrate. Finally, hydrate dissociation under drained conditions leads to volume contraction and/or stress relaxation, and pronounced shear strains can develop if the hydrate-bearing sand is subjected to deviatoric loading during dissociation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Time-stepping finite element analysis of the BDFM for a specific load condition is shown to be a challenging problem because the excitation required cannot be predetermined and the BDFM is not open loops stable for all operating conditions. A simulation approach using feedback control to set the torque and stabilise the BDFM is presented together with implementation details. The performance of the simulation approach is demonstrated with an example and computed results are compared with measurements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Water front structures have suffered significant damage in many of the recent earthquakes. These include gravity type quay walls, vertically composite walls, cantilever retaining walls, anchored bulkheads and similar structures. One of the primary causes for the poor performance of these classes of structures is the liquefaction of the foundation soil and in some instances liquefaction of the backfill soil. The liquefaction of the soil in-front of the quay wall tends to cause large lateral displacements and rotation of the wall. Often such gravity walls are placed on rubble mound deposited onto the sea bed.This paper presents finite element analyses of such a problem in which strength degradation of the foundation soil and the backfill material will be modelled using PZ mark III constitutive model. The performance of the wall in terms of its lateral displacement, vertical settlement and/or the rotation suffered by the wall will be presented. In addition, the contours of the horizontal and vertical effective stresses and the excess pore pressure ratio will be presented at different time instants together with hyrdraulic gradients. Immediately after the earthquake, the hydraulic gradients indicate migration of pore water into the region below the wall, suggesting further softening of the foundation soil below the wall.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A three-dimensional (3D) numerical model is proposed to solve the electromagnetic problems involving transport current and background field of a high-T c superconducting (HTS) system. The model is characterized by the E-J power law and H-formulation, and is successfully implemented using finite element software. We first discuss the model in detail, including the mesh methods, boundary conditions and computing time. To validate the 3D model, we calculate the ac loss and trapped field solution for a bulk material and compare the results with the previously verified 2D solutions and an analytical solution. We then apply our model to test some typical problems such as superconducting bulk array and twisted conductors, which cannot be tackled by the 2D models. The new 3D model could be a powerful tool for researchers and engineers to investigate problems with a greater level of complicity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Superconductors have a bright future; they are able to carry very high current densities, switch rapidly in electronic circuits, detect extremely small perturbations in magnetic fields, and sustain very high magnetic fields. Of most interest to large-scale electrical engineering applications are the ability to carry large currents and to provide large magnetic fields. There are many projects that use the first property, and these have concentrated on power generation, transmission, and utilization; however, there are relatively few, which are currently exploiting the ability to sustain high magnetic fields. The main reason for this is that high field wound magnets can and have been made from both BSCCO and YBCO, but currently, their cost is much higher than the alternative provided by low-Tc materials such as Nb3Sn and NbTi. An alternative form of the material is the bulk form, which can be magnetized to high fields. This paper explains the mechanism, which allows superconductors to be magnetized without the need for high field magnets to perform magnetization. A finite-element model is presented, which is based on the E-J current law. Results from this model show how magnetization of the superconductor builds up cycle upon cycle when a traveling magnetic wave is induced above the superconductor. © 2011 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The impact of a slug of dry sand particles against a metallic sandwich beam or circular sandwich plate is analysed in order to aid the design of sandwich panels for shock mitigation. The sand particles interact via a combined linear-spring-and-dashpot law whereas the face sheets and compressible core of the sandwich beam and plate are treated as rate-sensitive, elastic-plastic solids. The majority of the calculations are performed in two dimensions and entail the transverse impact of end-clamped monolithic and sandwich beams, with plane strain conditions imposed. The sand slug is of rectangular shape and comprises a random loose packing of identical, circular cylindrical particles. These calculations reveal that loading due to the sand is primarily inertial in nature with negligible fluid-structure interaction: the momentum transmitted to the beam is approximately equal to that of the incoming sand slug. For a slug of given incoming momentum, the dynamic deflection of the beam increases with decreasing duration of sand-loading until the impulsive limit is attained. Sandwich beams with thick, strong cores significantly outperform monolithic beams of equal areal mass. This performance enhancement is traced to the "sandwich effect" whereby the sandwich beams have a higher bending strength than that of the monolithic beams. Three-dimensional (3D) calculations are also performed such that the sand slug has the shape of a circular cylindrical column of finite height, and contains spherical sand particles. The 3D slug impacts a circular monolithic plate or sandwich plate and we show that sandwich plates with thick strong cores again outperform monolithic plates of equal areal mass. Finally, we demonstrate that impact by sand particles is equivalent to impact by a crushable foam projectile. The calculations on the equivalent projectile are significantly less intensive computationally, yet give predictions to within 5% of the full discrete particle calculations for the monolithic and sandwich beams and plates. These foam projectile calculations suggest that metallic foam projectiles can be used to simulate the loading by sand particles within a laboratory setting. © 2013 Elsevier Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Methane hydrate bearing soil has attracted increasing interest as a potential energy resource where methane gas can be extracted from dissociating hydrate-bearing sediments. Seismic testing techniques have been applied extensively and in various ways, to detect the presence of hydrates, due to the fact that hydrates increase the stiffness of hydrate-bearing sediments. With the recognition of the limitations of laboratory and field tests, wave propagation modelling using Discrete Element Method (DEM) was conducted in this study in order to provide some particle-scale insights on the hydrate-bearing sandy sediment models with pore-filling and cementation hydrate distributions. The relationship between shear wave velocity and hydrate saturation was established by both DEM simulations and analytical solutions. Obvious differences were observed in the dependence of wave velocity on hydrate saturation for these two cases. From the shear wave velocity measurement and particle-scale analysis, it was found that the small-strain mechanical properties of hydrate-bearing sandy sediments are governed by both the hydrate distribution patterns and hydrate saturation. © 2013 AIP Publishing LLC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Offshore wind capacity is expected to grow exponentially over the next decade resulting in the production of a considerable amount of renewable energy. Monopiles are currently the most popular type of foundation for supporting offshore wind turbines in shallow to medium depth waters. In this paper, the load-deformation response of a 3.8 m diameter monopile installed in soft clays when subjected to axial and lateral loading is investigated using centrifuge testing and soil pore-fluid coupled three-dimensional finite element analysis. Monopile deformation is principally assessed in terms of its lateral displacements and bending moments. Its behaviour as a short rigid pile is discussed using concepts such as its rotation at mudline and the pile depth at which pivoting occurs. © 2014 Taylor & Francis Group.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, a Finite Element implementation of a higher order strain gradient theory (due to Fleck and Hutchinson, 2001) has been used within the framework of large deformation elasto-viscoplasticity to study the indentation of metals with indenters of various geometries. Of particular interest is the indentation size effect (ISE) commonly observed in experiments where the hardness of a range of materials is found to be significantly higher at small depths of indentation but reduce to a lower, constant value at larger depths. That the ISE can be explained by strain gradient plasticity is well known but this work aims to qualitatively compare a gamut of experimental observations on this effect with predictions from a higher order strain gradient theory. Results indicate that many of the experimental observations are qualitatively borne out by our simulations. However, areas exist where conflicting experimental results make assessment of numerical predictions difficult. © 2012 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In FEA of ring rolling processes the tools' motions usually are defined prior to simulation. This procedure neglects the closed-loop control, which is used in industrial processes to control up to eight degrees of freedom (rotations, feed rates, guide rolls) in real time, taking into account the machine's performance limits as well as the process evolution. In order to close this gap in the new simulation approach all motions of the tools are controlled according to sensor values which are calculated within the FE simulation. This procedure leads to more realistic simulation results in comparison to the machine behaviour. © 2012 CIRP.