223 resultados para FUEL CYCLE CENTERS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although increasing the turbine inlet temperature has traditionally proved the surest way to increase cycle efficiency, recent work suggests that the performance of future gas turbines may be limited by increased cooling flows and losses. Another limiting scenario concerns the effect on cycle performance of real gas properties at high temperatures. Cycle calculations of uncooled gas turbines show that when gas properties are modelled accurately, the variation of cycle efficiency with turbine inlet temperature at constant pressure ratio exhibits a maximum at temperatures well below the stoichiometric limit. Furthermore, the temperature at the maximum decreases with increasing compressor and turbine polytropic efficiency. This behaviour is examined in the context of a two-component model of the working fluid. The dominant influences come from the change of composition of the combustion products with varying air/fuel ratio (particularly the contribution from the water vapour) together with the temperature variation of the specific heat capacity of air. There are implications for future industrial development programmes, particularly in the context of advanced mixed gas-steam cycles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Rolls-Royce Integrated-Planar Solid Oxide Fuel Cell (IP-SOFC) consists of ceramic modules which have electrochemical cells printed on the outer surfaces. The cathodes are the outermost layer of each cell and are supplied with oxygen from air flowing over the outside of the module. The anodes are in direct contact with the ceramic structure and are supplied with fuel from internal gas channels. Natural gas is reformed into hydrogen for use by the fuel cells in a separate reformer module of similar design except that the fuel cells are replaced by a reforming catalyst layer. The performance of the modules is intrinsically linked to the behaviour of the gas flows within their porous structures. Because the porous layers are very thin, a one-dimensional flow model provides a good representation of the flow property variations between fuel channel and fuel cell or reforming catalyst. The multi-component convective-diffusive flows are simulated using a new theory of flow in porous material, the Cylindrical Pore Interpolation Model. The effects of the catalysed methane reforming and water-gas shift chemical reactions are also considered using appropriate kinetic models. It is found that the shift reaction, which is catalysed by the anode material, has certain beneficial effects on the fuel cell module performance. In the reformer module it was found that the flow resistance of the porous support structure makes it difficult to sustain a high methane conversion rate. Although the analysis is based on IP-SOFC geometry, the modelling approach and general conclusions are applicable to other types of SOFC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three-phase induction motors offer significant advantages over commutator motors in some domestic appliances. Models for wide speed range three-phase induction motors for use in a horizontal axis washing machine have been developed using the MEGA finite element package with an external formulation for calculating iron losses. Motor loss predictions have been verified using a novel high accuracy calorimeter. Good agreement has been observed over a wide speed range at different loadings. The model is used to predict motor temperature rise under typical washing machine loading conditions to ensure its limiting temperature is not exceeded and enables alternative designs to be investigated without recourse to physical prototypes. © 2005 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gasoline Homogeneous Charge Compression Ignition (HCCI) combustion has been studied widely in the past decade. However, in HCCI engines using negative valve overlap (NVO), there is still uncertainty as to whether the effect of pilot injection during NVO on the start of combustion is primarily due to heat release of the pilot fuel during NVO or whether it is due to pilot fuel reformation. This paper presents data taken on a 4-cylinder gasoline direct injection, spark ignition/HCCI engine with a dual cam system, capable of recompressing residual gas. Engine in-cylinder samples are extracted at various points during the engine cycle through a high-speed sampling system and directly analysed with a gas chromatograph and flame ionisation detector. Engine parameter sweeps are performed for different pilot injection timings and quantities at a medium load point. Results show that for lean engine running conditions, earlier pilot injection timing leads to partial oxidation of the injected pilot fuel during NVO, while the fraction of light hydrocarbons remains constant for all parameter variations investigated. The same applies for a variation in pilot fuel amount. Thus there is evidence that in lean conditions, pilot injection-related NVO effects are dominated by heat release rather than fuel reformation. © 2009 SAE International.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rich combustion of n-heptane, diesel oil, jet A-1 kerosene, and bio-diesel (rapeseed-oil methyl ester) were studied to produce hydrogen enriched gas, ready for the cleanup stages for fuel cell applications. n-heptane was successfully reformed up to an equivalence ratio of 3:1, reaching a conversion efficiency up to 83% for a packed bed of alumina bead burner. Diesel, kerosene and bio-diesel were reformed to synthesis gas with conversion efficiency up to 65%. At equivalence ratio of 2:1 and P=7 kw, stability, low HC formation, high conversion efficiency, and low soot emission were achieved. A common synthesis gas composition around this condition was 15 and 13% H2, 15 and 17% CO, and 4 and 4.5% CO2 for n-heptane and diesel, jet A-1 and bio-diesel, respectively, for burner A. This is an abstract of a paper presented at the 2010 Spring National Meeting (San Antonio, TX 3/21-25/2010).