146 resultados para FOPID Controller


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The brushless doubly-fed machine exhibits rotor-speed-dependent, cross-coupling effects between inputs and outputs when vector control is implemented. Manipulation of the model equations shows that these effects are represented by rotation angles. A parameter-independent decoupling method is presented which reduces these cross-coupling disturbances by estimating the rotation angle and applying it back to the controller. © 2013 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigate performance bounds for feedback control of distributed plants where the controller can be centralized (i.e. it has access to measurements from the whole plant), but sensors only measure differences between neighboring subsystem outputs. Such "distributed sensing" can be a technological necessity in applications where system size exceeds accuracy requirements by many orders of magnitude. We formulate how distributed sensing generally limits feedback performance robust to measurement noise and to model uncertainty, without assuming any controller restrictions (among others, no "distributed control" restriction). A major practical consequence is the necessity to cut down integral action on some modes. We particularize the results to spatially invariant systems and finally illustrate implications of our developments for stabilizing the segmented primary mirror of the European Extremely Large Telescope. © 2013 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A method is proposed for on-line reconfiguration of the terminal constraint used to provide theoretical nominal stability guarantees in linear model predictive control (MPC). By parameterising the terminal constraint, its complete reconstruction is avoided when input constraints are modified to accommodate faults. To enlarge the region of feasibility of the terminal control law for a certain class of input faults with redundantly actuated plants, the linear terminal controller is defined in terms of virtual commands. A suitable terminal cost weighting for the reconfigurable MPC is obtained by means of an upper bound on the cost for all feasible realisations of the virtual commands from the terminal controller. Conditions are proposed that guarantee feasibility recovery for a defined subset of faults. The proposed method is demonstrated by means of a numerical example. © 2013 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The control of a class of combustion systems, suceptible to damage from self-excited combustion oscillations, is considered. An adaptive stable controller, called Self-Tuning Regulator (STR), has recently been developed, which meets the apparently contradictory challenge of relying as little as possible on a particular combustion model while providing some guarantee that the controller will cause no harm. The controller injects some fuel unsteadily into the burning region, thereby altering the heat release, in response to an input signal detecting the oscillation. This paper focuses on an extension of the STR design, when, due to stringent emission requirements and to the danger of flame extension, the amount of fuel used for control is limited in amplitude. A Lyapunov stability analysis is used to prove the stability of the modified STR when the saturation constraint is imposed. The practical implementation of the modified STR remains straightforward, and simulation results, based on the nonlinear premixed flame model developed by Dowling, show that in the presence of a saturation constraint, the self-excited oscillations are damped more rapidly with the modified STR than with the original STR. © 2001 by S. Evesque. Published by the American Institute of Aeronautics and Astronautics, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Copyright © 2014 John Wiley & Sons, Ltd. Copyright © 2014 John Wiley & Sons, Ltd. Summary A field programmable gate array (FPGA) based model predictive controller for two phases of spacecraft rendezvous is presented. Linear time-varying prediction models are used to accommodate elliptical orbits, and a variable prediction horizon is used to facilitate finite time completion of the longer range manoeuvres, whilst a fixed and receding prediction horizon is used for fine-grained tracking at close range. The resulting constrained optimisation problems are solved using a primal-dual interior point algorithm. The majority of the computational demand is in solving a system of simultaneous linear equations at each iteration of this algorithm. To accelerate these operations, a custom circuit is implemented, using a combination of Mathworks HDL Coder and Xilinx System Generator for DSP, and used as a peripheral to a MicroBlaze soft-core processor on the FPGA, on which the remainder of the system is implemented. Certain logic that can be hard-coded for fixed sized problems is implemented to be configurable online, in order to accommodate the varying problem sizes associated with the variable prediction horizon. The system is demonstrated in closed-loop by linking the FPGA with a simulation of the spacecraft dynamics running in Simulink on a PC, using Ethernet. Timing comparisons indicate that the custom implementation is substantially faster than pure embedded software-based interior point methods running on the same MicroBlaze and could be competitive with a pure custom hardware implementation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Toward our comprehensive understanding of legged locomotion in animals and machines, the compass gait model has been intensively studied for a systematic investigation of complex biped locomotion dynamics. While most of the previous studies focused only on the locomotion on flat surfaces, in this article, we tackle with the problem of bipedal locomotion in rough terrains by using a minimalistic control architecture for the compass gait walking model. This controller utilizes an open-loop sinusoidal oscillation of hip motor, which induces basic walking stability without sensory feedback. A set of simulation analyses show that the underlying mechanism lies in the "phase locking" mechanism that compensates phase delays between mechanical dynamics and the open-loop motor oscillation resulting in a relatively large basin of attraction in dynamic bipedal walking. By exploiting this mechanism, we also explain how the basin of attraction can be controlled by manipulating the parameters of oscillator not only on a flat terrain but also in various inclined slopes. Based on the simulation analysis, the proposed controller is implemented in a real-world robotic platform to confirm the plausibility of the approach. In addition, by using these basic principles of self-stability and gait variability, we demonstrate how the proposed controller can be extended with a simple sensory feedback such that the robot is able to control gait patterns autonomously for traversing a rough terrain. © 2010 Springer Science+Business Media, LLC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mobility of wheeled or legged machines can be significantly increased if they are able to move from a solid surface into a three-dimensional space. Although that may be achieved by addition of flying mechanisms, the payload fraction will be the limiting factor in such hybrid mobile machines for many applications. Inspired by spiders producing draglines to assist locomotion, the paper proposes an alternative mobile technology where a robot achieves locomotion from a solid surface into a free space. The technology resembles the dragline production pathway in spiders to a technically feasible degree and enables robots to move with thermoplastic spinning of draglines. As an implementation, a mobile robot has been prototyped with thermoplastic adhesives as source material of the draglines. Experimental results show that a dragline diameter range of 1.17-5.27 mm was achievable by the 185 g mobile robot in descending locomotion from the solid surface of a hanging structure with a power consumption of 4.8 W and an average speed of 5.13 cm min(-1). With an open-loop controller consisting of sequences of discrete events, the robot has demonstrated repeatable dragline formation with a relative deviation within -4% and a length close to the metre scale.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Physical connection and disconnection control has practical meanings for robot applications. Compared to conventional connection mechanisms, bonding involving a thermal process could provide high connection strength, high repeatability, and power-free connection maintenance, etc. In terms of disconnection, an established bond can be easily weakened with a temperature rise of the material used to form the bond. Hot melt adhesives (HMAs) are such material that can form adhesive bonds with any solid surfaces through a thermally induced solidification process. This paper proposes a novel control method for automatic connection and disconnection based on HMAs. More specifically, mathematical models are first established to describe the flowing behavior of HMAs at higher temperatures, as well as the temperature-dependent strength of an established HMA bond. These models are then validated with a specific type of HMA in a minimalistic robot setup equipped with two mechatronic devices for automated material handling. The validated models are eventually used for determining open parameters in a feedback controller for the robot to perform a pick-and-place task. Through a series of trials with different wooden and aluminum parts, we evaluate the performance of the automatic connection and disconnection methods in terms of speed, energy consumption, and robustness. © 1996-2012 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Modular self-reconfigurable robots have previously demonstrated that automatic control of their own body shapes enriches their behavioural functions. However, having predefined rigid modules technically limits real-world systems from being hyper-redundant and compliant. Encouraged by recent progress using elastically deformable material for robots, we propose the concept of soft self-reconfigurable robots which may become hyper-flexible during interaction with the environment. As the first attempt towards this goal, the paper proposes a novel approach using viscoelastic material Hot-Melt Adhesives (HMAs): for physical connection and disconnection control between bodies that are not necessarily predefined rigid modules. We present a model that characterizes the temperature dependency of the strength of HMA bonds, which is then validated and used in a feedback controller for automatic connection and disconnection. Using a minimalistic robot platform that is equipped with two devices handling HMAs, the performance of this method is evaluated in a pick-and-place experiment with aluminium and wooden parts. © 2012 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is much to gain from providing walking machines with passive dynamics, e.g. by including compliant elements in the structure. These elements can offer interesting properties such as self-stabilization, energy efficiency and simplified control. However, there is still no general design strategy for such robots and their controllers. In particular, the calibration of control parameters is often complicated because of the highly nonlinear behavior of the interactions between passive components and the environment. In this article, we propose an approach in which the calibration of a key parameter of a walking controller, namely its intrinsic frequency, is done automatically. The approach uses adaptive frequency oscillators to automatically tune the intrinsic frequency of the oscillators to the resonant frequency of a compliant quadruped robot The tuning goes beyond simple synchronization and the learned frequency stays in the controller when the robot is put to halt. The controller is model free, robust and simple. Results are presented illustrating how the controller can robustly tune itself to the robot, as well as readapt when the mass of the robot is changed. We also provide an analysis of the convergence of the frequency adaptation for a linearized plant, and show how that analysis is useful for determining which type of sensory feedback must be used for stable convergence. This approach is expected to explain some aspects of developmental processes in biological and artificial adaptive systems that "develop" through the embodied system-environment interactions. © 2006 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Guided self-organization can be regarded as a paradigm proposed to understand how to guide a self-organizing system towards desirable behaviors, while maintaining its non-deterministic dynamics with emergent features. It is, however, not a trivial problem to guide the self-organizing behavior of physically embodied systems like robots, as the behavioral dynamics are results of interactions among their controller, mechanical dynamics of the body, and the environment. This paper presents a guided self-organization approach for dynamic robots based on a coupling between the system mechanical dynamics with an internal control structure known as the attractor selection mechanism. The mechanism enables the robot to gracefully shift between random and deterministic behaviors, represented by a number of attractors, depending on internally generated stochastic perturbation and sensory input. The robot used in this paper is a simulated curved beam hopping robot: a system with a variety of mechanical dynamics which depends on its actuation frequencies. Despite the simplicity of the approach, it will be shown how the approach regulates the probability of the robot to reach a goal through the interplay among the sensory input, the level of inherent stochastic perturbation, i.e., noise, and the mechanical dynamics. © 2014 by the authors; licensee MDPI, Basel, Switzerland.