264 resultados para Electron-phonon
Resumo:
The detailed understanding of the electronic properties of carbon-based materials requires the determination of their electronic structure and more precisely the calculation of their joint density of states (JDOS) and dielectric constant. Low electron energy loss spectroscopy (EELS) provides a continuous spectrum which represents all the excitations of the electrons within the material with energies ranging between zero and about 100 eV. Therefore, EELS is potentially more powerful than conventional optical spectroscopy which has an intrinsic upper information limit of about 6 eV due to absorption of light from the optical components of the system or the ambient. However, when analysing EELS data, the extraction of the single scattered data needed for Kramers Kronig calculations is subject to the deconvolution of the zero loss peak from the raw data. This procedure is particularly critical when attempting to study the near-bandgap region of materials with a bandgap below 1.5 eV. In this paper, we have calculated the electronic properties of three widely studied carbon materials; namely amorphous carbon (a-C), tetrahedral amorphous carbon (ta-C) and C60 fullerite crystal. The JDOS curve starts from zero for energy values below the bandgap and then starts to rise with a rate depending on whether the material has a direct or an indirect bandgap. Extrapolating a fit to the data immediately above the bandgap in the stronger energy loss region was used to get an accurate value for the bandgap energy and to determine whether the bandgap is direct or indirect in character. Particular problems relating to the extraction of the single scattered data for these materials are also addressed. The ta-C and C60 fullerite materials are found to be direct bandgap-like semiconductors having a bandgaps of 2.63 and 1.59eV, respectively. On the other hand, the electronic structure of a-C was unobtainable because it had such a small bandgap that most of the information is contained in the first 1.2 eV of the spectrum, which is a region removed during the zero loss deconvolution.
Resumo:
The overall aim of this work is to produce arrays of field emitting microguns, based on carbon nanotubes, which can be utilised in the manufacture of large area field emitting displays, parallel e-beam lithography systems and electron sources for high frequency amplifiers. This paper will describe the work carried out to produce patterned arrays of aligned multiwall carbon nanotubes (MWCNTs) using a dc plasma technique and a Ni catalyst. We will discuss how the density of the carbon nanotube/fibres can be varied by reducing the deposition yield through nickel interaction with a diffusion layer or by direct lithographic patterning of the Ni catalyst to precisely define the position of each nanotube/fibre. Details of the field emission behaviour of the different arrays of MWCNTS will also be presented. © 2002 Published by Elsevier Science B.V.
Resumo:
A microelectronic parallel electron-beam lithography system using an array of field emitting microguns is currently being developed. This paper investigates the suitability of various carbon based materials for the electron source in this device, namely tetrahedrally bonded amorphous carbon (ta-C), nanoclustered carbon and carbon nanotubes. Ta-C was most easily integrated into a gated field emitter structure and various methods, such as plasma and heavy ion irradiation, were used to induce emission sites in the ta-C. However, the creation of such emission sites at desired locations appeared to be difficult/random in nature and thus the material was unsuitable for this application. In contrast, nanoclustered carbon material readily field emits with a high site density but the by-products from the deposition process create integration issues when using the material in a microelectronic gated structure. Carbon nanotubes are currently the most promising candidate for use as the emission source. We have developed a high yield and clean (amorphous carbon by-product free) PECVD process to deposit single free standing nanotubes at desired locations with exceptional uniformity in terms of nanotube height and diameter. Field emission from an array of nanotubes was also obtained. © 2001 Elsevier Science B.V.