143 resultados para Efficient elliptic curve arithmetic
Resumo:
State-of-the-art speech recognisers are usually based on hidden Markov models (HMMs). They model a hidden symbol sequence with a Markov process, with the observations independent given that sequence. These assumptions yield efficient algorithms, but limit the power of the model. An alternative model that allows a wide range of features, including word- and phone-level features, is a log-linear model. To handle, for example, word-level variable-length features, the original feature vectors must be segmented into words. Thus, decoding must find the optimal combination of segmentation of the utterance into words and word sequence. Features must therefore be extracted for each possible segment of audio. For many types of features, this becomes slow. In this paper, long-span features are derived from the likelihoods of word HMMs. Derivatives of the log-likelihoods, which break the Markov assumption, are appended. Previously, decoding with this model took cubic time in the length of the sequence, and longer for higher-order derivatives. This paper shows how to decode in quadratic time. © 2013 IEEE.
Resumo:
This paper is part of a larger PhD research project examining the apparent conflict in UK planning between energy efficiency and conservation for the retrofit of the thermal envelope of the existing building stock. Review of the literature shows that the UK will not meet its 2050 emission reduction target without substantial improvement to the energy performance of the thermal envelope of the existing building stock and that significantly, 40% of the existing stock has heritage status and may be exempted from Building Regulations. A review of UK policy and legislation shows that there are clear national priorities towards reducing emissions and addressing climate change, yet also shows a movement towards local decision making and control. This paper compares the current status of thirteen London Boroughs in respect to their position on thermal envelope retrofit for heritage and traditionally constructed buildings. Data collection is through ongoing surveys and interviews that compare statistical data, planning policies, sustainability and environmental priorities, and Officer decision-making. This paper finds that there is a lack of consistency in application of planning policy across Boroughs and suggests that this is a barrier to the up-take of energy efficient retrofit. Various recommendations are suggested at both national and local level which could help UK planning and planning officers deliver more energy efficient heritage retrofits.
Resumo:
Ring rolling is an incremental bulk forming process for the near-net-shape production of seamless rings. This paper shows how nowadays the process design and optimization can be efficiently supported by simulation methods. For reliable predictions of the material flow and the microstructure evolution it's necessary to include a real ring rolling mill's control algorithm into the model. Furthermore an approach for the online measurement of the profile evolution during the process is presented by means of axial profiling in ring rolling. Hence the definition of new ring rolling strategies is possible even for advanced geometries.
Resumo:
Surprisingly expensive to compute wall distances are still used in a range of key turbulence and peripheral physics models. Potentially economical, accuracy improving differential equation based distance algorithms are considered. These involve elliptic Poisson and hyperbolic natured Eikonal equation approaches. Numerical issues relating to non-orthogonal curvilinear grid solution of the latter are addressed. Eikonal extension to a Hamilton-Jacobi (HJ) equation is discussed. Use of this extension to improve turbulence model accuracy and, along with the Eikonal, enhance Detached Eddy Simulation (DES) techniques is considered. Application of the distance approaches is studied for various geometries. These include a plane channel flow with a wire at the centre, a wing-flap system, a jet with co-flow and a supersonic double-delta configuration. Although less accurate than the Eikonal, Poisson method based flow solutions are extremely close to those using a search procedure. For a moving grid case the Poisson method is found especially efficient. Results show the Eikonal equation can be solved on highly stretched, non-orthogonal, curvilinear grids. A key accuracy aspect is that metrics must be upwinded in the propagating front direction. The HJ equation is found to have qualitative turbulence model improving properties. © 2003 by P. G. Tucker.
Resumo:
This paper explores a design strategy of hopping robots, which makes use of free vibration of an elastic curved beam. In this strategy, the leg structure consists of a specifically shaped elastic curved beam and a small rotating mass that induces free vibration of the entire robot body. Although we expect to improve energy efficiency of locomotion by exploiting the mechanical dynamics, it is not trivial to take advantage of the coupled dynamics between actuation and mechanical structures for the purpose of locomotion. From this perspective, this paper explains the basic design principles through modeling, simulation, and experiments of a minimalistic hopping robot platform. More specifically, we show how to design elastic curved beams for stable hopping locomotion and the control method by using unconventional actuation. In addition, we also analyze the proposed design strategy in terms of energy efficiency and discuss how it can be applied to the other forms of legged robot locomotion. © 1996-2012 IEEE.
Resumo:
The use of free vibration in elastic structure can lead to energy-efficient robot locomotion, since it significantly reduces the energy expenditure if properly designed and controlled. However, it is not well understood how to harness the dynamics of free vibration for the robot locomotion, because of the complex dynamics originated in discrete events and energy dissipation during locomotion. From this perspective, the goals of this paper are to propose a design strategy of hopping robot based on elastic curved beams and actuated rotating masses and to identify the minimalistic model that can characterize the basic principle of robot locomotion. Since the robot mainly exhibits vertical hopping, three 1-D models are examined that contain different configurations of simple spring-damper-mass components. The real-world and simulation experiments show that one of the models best characterizes the robot hopping, through analyzing the basic kinematics and negative works in actuation. Based on this model, the self-stability of hopping motion under disturbances is investigated, and design and control parameters are analyzed for the energy-efficient hopping. In addition, further analyses show that this robot can achieve the energy-efficient hopping with the variation in payload, and the source of energy dissipation of the robot hopping is investigated. © 1982-2012 IEEE.
Resumo:
The use of free vibration in elastic structure can lead to energy efficient robot locomotion, since it significantly reduces the energy expenditure if properly designed and controlled. However, it is not well understood how to harness the dynamics of free vibration for the robot locomotion, because of the complex dynamics originated in discrete events and energy dissipation during locomotion. From this perspective, this paper explores three minimalistic models of free vibration that can characterize the basic principle of robot locomotion. Since the robot mainly exhibits vertical hopping, three one-dimensional models are examined that contain different configurations of simple spring-damper-mass components. The self-stability of these models are also investigated in simulation. The real-world and simulation experiments show that one of the models best characterizes the robot hopping, through analyzing the basic kinematics and negative works in actuation. Based on this model, the control parameters are analyzed for the energy efficient hopping. © 2013 IEEE.
Resumo:
We propose a novel information-theoretic approach for Bayesian optimization called Predictive Entropy Search (PES). At each iteration, PES selects the next evaluation point that maximizes the expected information gained with respect to the global maximum. PES codifies this intractable acquisition function in terms of the expected reduction in the differential entropy of the predictive distribution. This reformulation allows PES to obtain approximations that are both more accurate and efficient than other alternatives such as Entropy Search (ES). Furthermore, PES can easily perform a fully Bayesian treatment of the model hyperparameters while ES cannot. We evaluate PES in both synthetic and real-world applications, including optimization problems in machine learning, finance, biotechnology, and robotics. We show that the increased accuracy of PES leads to significant gains in optimization performance.