189 resultados para Concrete footings
Resumo:
The creep effects on sequentially built bridges are analysed by the theory of thermal creep. Two types of analysis are used: time dependent and steady state. The traditional uniform creep analysis is also introduced briefly. Both simplified and parabolic normalising creep-temperature functions are used in the analysis for comparison. Numerical examples are presented, calculated by a computer program based on the theory of thermal creep and using the displacement method. It is concluded that different assumptions within thermal creep can lead to very different results when compared with uniform creep analysis. The steady-state analysis of monolithically built structures can serve as a limit to evaluate total creep effects for both monolithically and sequentially built structures. The importance of the correct selection of the normalising creep-temperature function is demonstrated.
Resumo:
This paper describes an experimental study of a new form of prestressed concrete beam. Aramid Fiber Reinforced Polymers (AFRPs) are used to provide compression confinement in the form of interlocking circular spirals, while external tendons are made from parallel-lay aramid ropes. The response shows that the confinement of the compression flange significantly increases the ductility of the beam, allowing much better utilization of the fiber strength. The failure of the beam is characterized by rupture of spiral confinement reinforcement.
Resumo:
http://www-civ.eng.cam.ac.uk/cjb/papers/cp88.pdf
Resumo:
External, prestressed carbon fiber reinforced polymer (CFRP) straps can be used to enhance the shear strength of existing reinforced concrete beams. In order to effectively design a strengthening system, a rational predictive theory is required. The current work investigates the ability of the modified compression field theory (MCFT) to predict the behavior of rectangular strap strengthened beams where the discrete CFRP strap forces are approximated as a uniform vertical stress. An unstrengthened control beam and two strengthened beams were tested to verify the predictions. The experimental results suggest that the MCFT could predict the general response of a strengthened beam with a uniform strap spacing < 0.9d. However, whereas the strengthened beams failed in shear, the MCFT predicted flexural failures. It is proposed that a different compression softening model or the inclusion of a crack width limit is required to reflect the onset of shear failures in the strengthened beams.
Resumo:
In current practice the strength evaluation of a bridge system is typically based on firstly using elastic analysis to determine the distribution of load effects in the elements and then checking the ultimate section capacity of those elements. Ductility of the components in most bridge structures permits local yield and subsequent redistribution of the applied loads from the most heavily loaded elements. As a result a bridge can continue to carry additional loading even after one member has yielded, which has conventionally been adopted as the "failure criterion" in bridge strength evaluation. This means that a bridge with inherent redundancy has additional reserves of strength such that the failure of one element does not result in the failure of the complete system. For these bridges warning signs will show up and measures can be undertaken before the ultimate collapse is happening. This paper proposes a rational methodology for calculating the ultimate system strength and including in bridge evaluation the warning level due to redundancy. © 2004 Taylor & Francis Group, London.
Resumo:
This study investigates the structural behavior of precracked reinforced concrete (RC) T-beams strengthened in shear with externally bonded carbon fiber-reinforced polymer (CFRP) sheets. It reports on seven tests on unstrengthened and strengthened RC T-beams, identifying the influence of load history, beam depth, and percentage of longitudinal steel reinforcement on the structural behavior. The experimental results indicate that the contributions of the external CFRP sheets to the shear force capacity can be significant and depend on most of the investigated variables. This study also investigates the accuracy of the prediction of the fiber-reinforced polymer (FRP) contribution in ACI 440.2R-08, UK Concrete Society TR55, and fib Bulletin 14 design guidelines for shear strengthening. A comparison of predicted values with experimental results indicates that the guidelines can overestimate the shear contribution of the externally bonded FRP system. © 2012, American Concrete Institute.
Resumo:
The permeability of asphalt concrete has been the subject of much study by pavement engineers over the last decade. The work undertaken has tended to focus on high air voids as the primary indicator of permeable asphalt concrete. This paper presents a simple approach for understanding the parameters that affect permeability. Principles explained by Taylor in 1956 in channel theory work for soils are used to derive a new parameter-representative pore size. Representative pore size is related to the air voids in the compacted mix and the D75 of the asphalt mix grading curve. Collected Superpave permeability data from published literature and data collected by the writers at the Queensland Department of Transport and Main Roads is shown to be better correlated with representative pore size than air voids, reducing the scatter considerably. Using the database of collected field and laboratory permeability values an equation is proposed that pavement engineers can use to estimate the permeability of in-place pavements. © 2011 ASCE.