149 resultados para Altitude, Influence of


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A pin-on-disc apparatus has been used to obtain continuous simultaneous measurements of the wear and friction (sliding force) behaviour of metals on bonded silicon carbide abrasive paper under conditions of controlled humidity. Iron, mild steel, and copper exhibit qualitatively similar wear behaviour; the wear rate decreases progressively with the number of passes over the same track. In contrast, the wear rate of titanium remains constant. Variation in atmospheric humidity has little effect on the wear rates of copper or titanium, although a slight effect was found in mild steel and iron. Refs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A pin-on-disc apparatus has been used to investigate the wear and friction (sliding force) behavior of metals on bonded silicon carbide and alumina papers under conditions of controlled atmospheric composition. The wear rates of both commercial purity titanium and the alloy Ti-6%Al-4%V tested in air were found to remain constant with time, in contrast with the behavior of other metals tested under similar conditions, which exhibited a progressive decrease in wear rate with increasing number of passes along the same track. It is proposed that the concentration of interstitial nitrogen and oxygen in the worn metal surface, which largely determines its mechanical properties, strongly influences both the ductility of the abraded material and the force of adhesion between the metal and the abrasive particles. Parallels are drawn between abrasive wear and machining to illustrate the importance of oxygen at the interface between workpiece and tool surfaces.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sintered boron carbide is very hard, and can be an attractive material for wear-resistant components in critical applications. Previous studies of the erosion of less hard ceramics have shown that their wear resistance depends on the nature of the abrasive particles. Erosion tests were performed on a sintered boron carbide ceramic with silica, alumina and silicon carbide erodents. The different erodents caused different mechanisms of erosion, either by lateral cracking or small-scale chipping; the relative values of the hardness of the erodent and the target governed the operative mechanism. The small-scale chipping mechanism led to erosion rates typically an order of magnitude lower than the lateral fracture mechanism. The velocity exponents for erosion in the systems tested were similar to those seen in other work, except that measured with the 125 to 150 μm silica erodent. With this erodent the exponent was initially high, then decreased sharply with increasing velocity and became negative. It was proposed that this was due to deformation and fragmentation of the erodent particles. In the erosion testing of ceramics, the operative erosion mechanism is important. Care must be taken to ensure that the same mechanism is observed in laboratory testing as that which would be seen under service conditions, where the most common erodent is silica.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An enhanced physical model of the bowed string presented previously [1] is explored. It takes into account: the width of the bow, the angular motion of the string, bow-hair elasticity and string bending stiffness. The results of an analytical investigation of a model system - an infinite string sticking to a bow of finite width and driven on one side of the bow - are compared with experimental results published by Cremer [2] and reinterpreted here. Comparison shows that both the width of the bow and the bow-hair elasticity have a large impact on the reflection and transmission behaviour. In general, bending stiffness plays a minor role. Furthermore, a method of numerical simulation of the stiff string bowed with a bow of finite width is presented along with some preliminary results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An explanation for the observed variations in the output behaviour of SOI transistors with different buried oxide thicknesses is presented. At low drain bias, the temperature effects are relatively insignificant while at high drain bias, the temperature effects dominate the nonlinear behaviour of the output characteristics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes the effect of the state of the inlet boundary layer (laminar or turbulent) on the structure of the endwall flow on two different profiles of low-pressure (LP) turbine blades (solid thin and hollow thick). At present the state of the endwall boundary layer at the inlet of a real LP turbine is not known. The intention of this paper is to show that, for different designs of LP turbine, the state of the inlet boundary layer affects the performance of the blade in very different ways. The testing was completed at low speed in a linear cascade using area traversing, flow visualization and static pressure measurements. The paper shows that, for a laminar inlet boundary layer, the two profiles have a similar loss distribution and structure of endwall flow. However, for a turbulent inlet boundary layer the two profiles are shown to differ significantly in both the total loss and endwall flow structure. The pressure side separation bubble on the solid thin profile is shown to interact with the passage vortex, causing a higher endwall loss than that measured on the hollow thick profile.