159 resultados para transient stimulated Brillouin scattering


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The low frequency vibrational spectrum of cluster beam deposited carbon films was studied by Brillouin light scattering. In thin films the values of both bulk modulus and shear modulus has been estimated from the shifts of surface phonon peaks. The values found indicate a mainly sp2 coordinated random network with low density. In thick films a bulk longitudinal phonon peak was detected in a spectral range compatible with the value of the index of refraction and of the elastic constants of thin films. High surface roughness, combined with a rather strong bulk central peak, prevented the observation of surface phonon features. © 1998 Elsevier Science Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although a wide range of techniques exist for slope monitoring, the task of monitoring slopes is sometimes complicated by the extensive nature and unpredictability of slope movements. The Brillouin optical time-domain reflectometer (BOTDR) is a distributed optical fiber strain measurement technology utilising Brillouin scattering. This method measures continuous strain along a standard optical fibre over a distance up to 10 km and hence has potential to detect deformations and diagnose problems along large sections of slopes and embankments. This paper reports the demonstration of BOTDR method for monitoring surface ground movements of clay cuttings and embankments along London's ring M25 motorway. A field trial investigating varying methods of onsite fibre optic installations was conducted. The surrounding ground was artificially moved by excavating a 3 m deep trench perpendicular to the instrumented sections. Results obtained from onsite installations after slope movement demonstrate a half-pipe covered fibre optic installed on wide (200mm) Tensar ™SS20 geogrid gives the most consistent recorded strain change profile. Initial conclusions suggest this method best represents induced ground motion at the surface and hence is recommended for implementation in future sitework. Copyright ASCE 2008.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Carbon coatings of thickness down to 2 nanometers are needed to increase the storage density in magnetic hard disks and reach the 100 Gbit/in2 target. Methods to measure the properties of these ultrathin hard films still have to be developed. We show that combining Surface Brillouin Scattering (SBS) andX-ray reflectivity measurements the elastic constants of such films are accessible. Tetrahedral amorphous carbofilms of thickness down to about 2 nm were deposited on Si by an S bend filtered cathodic vacuum arc, achieving a continuous coverage on large areas free of macroparticles. Film thickness and mass density are measured by X-ray reflectivity: densities above 3 g/cm3 are found, indicating a significant sp3 content. The dispersion relations of surface acoustic waves are measured by SBS. We show that for thicknesses above ∼4 nm these waves can be described by a continuum elastic model based on a single homogeneous equivalent film. The elastic constants can then be obtained by fitting the dispersion relations, computed for given film properties, to the measured dispersion relations. For thicknesses of 3 nm or less qualitative differences among films are well measurable, but quantitative results are less reliable. We have thus shown that we can grow and characterise nanometer size tetrahedral amorphous carbon film, which maintain their high density and peculiar mechanical properties down to around 4 nm thickness, satisfying the requirements set for the hard disk coating material.

Relevância:

20.00% 20.00%

Publicador: