56 resultados para recurrent neural networks


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Four types of neural networks which have previously been established for speech recognition and tested on a small, seven-speaker, 100-sentence database are applied to the TIMIT database. The networks are a recurrent network phoneme recognizer, a modified Kanerva model morph recognizer, a compositional representation phoneme-to-word recognizer, and a modified Kanerva model morph-to-word recognizer. The major result is for the recurrent net, giving a phoneme recognition accuracy of 57% from the si and sx sentences. The Kanerva morph recognizer achieves 66.2% accuracy for a small subset of the sa and sx sentences. The results for the word recognizers are incomplete.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The nonlinear modelling ability of neural networks has been widely recognised as an effective tool to identify and control dynamic systems, with applications including nonlinear vehicle dynamics which this paper focuses on using multi-layer perceptron networks. Existing neural network literature does not detail some of the factors which effect neural network nonlinear modelling ability. This paper investigates into and concludes on required network size, structure and initial weights, considering results for networks of converged weights. The paper also presents an online training method and an error measure representing the network's parallel modelling ability over a range of operating conditions. Copyright © 2010 Inderscience Enterprises Ltd.

Relevância:

100.00% 100.00%

Publicador: