20 resultados para positron lifetimes
Resumo:
The mean-lifetimes, τ, of various medium-spin excited states in Pd103 and Cd106,107 have been deduced using the Recoil Distance Doppler Shift technique and the Differential Decay Curve Method. In Cd106, the mean-lifetimes of the Iπ=12+ state at Ex=5418 keV and the Iπ=11- state at Ex=4324 keV have been deduced as 11.4(17)ps and 8.2(7)ps, respectively. The associated β2 deformation within the axially-symmetric deformed rotor model for these states are 0.14(1) and 0.14(1), respectively. The β2 deformation of 0.14(1) for the Iπ=12+ state in Cd106 compares with a predicted β2 value from total Routhian surface (TRS) calculations of 0.17. In addition, the mean-lifetimes of the yrast Iπ=152- states in Pd103 (at Ex=1262 keV) and Cd107 (at Ex=1360 keV) have been deduced to be 31.2(44)ps and 31.4(17)ps, respectively, corresponding to β2 values of 0.16(1) and 0.12(1) assuming axial symmetry. Agreement with TRS calculations are good for Pd103 but deviate for that predicted for Cd107. © 2007 The American Physical Society.
Resumo:
CW and time-resolved photoluminescence measurements are used to investigate exciton recombination dynamics in GaAsAlGaAs heterostructure nanowires grown with a recently developed technique which minimizes twinning. A thin capping layer is deposited to eliminate the possibility of oxidation of the AlGaAs shell as a source of oxygen defects in the GaAs core. We observe exciton lifetimes of ∼1 ns, comparable to high quality two-dimensional double heterostructures. These GaAs nanowires allow one to observe state filling and many-body effects resulting from the increased carrier densities accessible with pulsed laser excitation. © 2008 American Institute of Physics.
Resumo:
High repetition rate passively mode-locked sources are of significant interest due to their potential for applications including optical clocking, optical sampling, communications and others. Due to their short excited state lifetimes mode-locked VECSELs are ideally suited to high repetition rate operation, however fundamentally mode-locked quantum well-based VECSELs have not achieved repetition rates above 10 GHz due to the limitations placed on the cavity geometry by the requirement that the saturable absorber saturates more quickly than the gain. This issue has been overcome by the use of quantum dot-based saturable absorbers with lower saturation fluences leading to repetition rates up to 50 GHz, but sub-picosecond pulses have not been achieved at these repetition rates. We present a passively harmonically mode-locked VECSEL emitting pulses of 265 fs duration at a repetition rate of 169 GHz with an output power of 20 mW. The laser is based around an antiresonant 6 quantum well gain sample and is mode-locked using a semiconductor saturable absorber mirror. Harmonic modelocking is achieved by using an intracavity sapphire etalon. The sapphire then acts as a coupled cavity, setting the repetition rate of the laser while still allowing a tight focus on the saturable absorber. RF spectra of the laser output show no peaks at harmonics of the fundamental repetition rate up to 26 GHz, indicating stable harmonic modelocking. Autocorrelations reveal groups of pulses circulating in the cavity as a result of an increased tendency towards Q-switched modelocking due to the low pulse energies.
Resumo:
This paper presents research into superconducting Micro-Bearings for MEMS systems. Advanced silicon processing techniques developed for the Very Large Scale Integration (VLSI) industry have been exploited in recent years to enable the production of micro-engineered moving mechanical systems. These devices commonly known as Micro-ElectroMechanical Systems (MEMS) have many potential advantages. In many respects the effect of scaling a machine from macro-sized to micro-sized are either neutral or beneficial. However in one important respect the scaling produces a severely detrimental effect. That respect is in the tribology and the subsequent wear on the high speed rotating machines. This leads to very short device lifetimes. This paper presents results obtained from a MEMS motor supported on superconducting bearings. The bearings are self-positioning, relying on, the Meissner effect to provide a levitation force which moves the rotor into position and flux pinning to provide stability thereafter. The rotor is driven by a simple electrostatic type motor in which photo resist is used to pattern the motor poles directly onto the rotor. © 2005 IEEE.
Resumo:
This article presents results from conventional creep tests (CCT) and two accelerated test methods (the stepped isothermal method (SIM) and the stepped isostress method (SSM)) to determine the creep and creep-rupture behavior of two different aramid fibers, Kevlar 49 and Technora. CCT are regarded as the true behavior of the yarn, but they are impractical for long-term use where failures are expected only after many years. All the tests were carried out on the same batches of yarns, and using the same clamping arrangements, so the tests should be directly comparable. For both materials, SIM testing gives good agreement with CCT and gave stress-rupture lifetimes that followed the same trend. However, there was significant variation for SSM testing, especially when testing Technora fibers. The results indicate that Kevlar has a creep strain capacity that is almost independent of stress, whereas Technora shows a creep strain capacity that depends on stress. Its creep strain capacity is approximately two to three times that of Kevlar 49. The accelerated test methods give indirect estimates for the activation energy and the activation volume of the fibers. The activation energy for Technora is about 20% higher than that for Kevlar, meaning that it is less sensitive to the effects of increasing temperature. The activation volume for both materials was similar, and in both cases, stress dependent. Copyright © 2012 Wiley Periodicals, Inc.
Resumo:
Measurements consisting of γ-ray excitation functions and angular distributions were performed using the (n,n′γ) reaction on Ni62. The excitation function data allowed us to check the consistency of the placement of transitions in the level scheme. From γ-ray angular distributions, the lifetimes of levels up to ~3.8 MeV in excitation energy were extracted with the Doppler-shift attenuation method. The experimentally deduced values of reduced transition probabilities were compared with the predictions of the quadrupole vibrator model and with large-scale shell model calculations in the fp shell configuration space. Two-phonon states were found to exist with some notable deviation from the predictions of the quadrupole vibrator model, but no evidence for the existence of three-phonon states could be established. Z=28 proton core excitations played a major role in understanding the observed structure. © 2011 American Physical Society.
Resumo:
Two separate experiments using the Differential Decay Curve Method have been performed to extract mean lifetimes of excited states in 106Cd. The medium-spin states of interest were populated by the 98Mo( 12C, 4n) 106Cd reaction performed at the Wright Nuclear Structure Lab., Yale University. From this experiment, two isomeric state mean lifetimes have been deduced. The low-lying states were populated by the 96Mo(13C, 3n)106Cd reaction performed at the Institut für Kernphysik, Universität zu Köln. The mean lifetime of the Iπ = 21 + state was deduced, tentatively, as 16.4(9) ps. This value differs from the previously accepted literature value from Coulomb excitation of 10.43(9) ps.
Resumo:
Lifetimes of excited states in 128Ce were measured using the recoil distance Doppler-shift (RDDS) and the Doppler-shift attenuation (DSAM) methods. The experiments were performed at the Wright Nuclear Structure Laboratory of Yale University. Excited states of 128Ce were populated in the 100Mo(32Si,4n) reaction at 120 MeV and the nuclear γ decay was measured with an array of eight Clover detectors positioned at forward and backward angles. The deduced yrast transition strengths together with the energies of the levels within the ground-state (gs) band of 128Ce are in agreement with the predicted values for the X(5) critical point symmetry. Thus, we suggest 128Ce as a benchmark X(5) nucleus in the mass A ≈ 130 region. © World Scientific Publishing Company.
Resumo:
Preliminary lifetime values have been measured for a number of near-yrast states in the odd-A transitional nuclei 107Cd and 103Pd. The reaction used to populate the nuclei of interest was 98Mo( 12C,3nxα)107Cd, 103Pd, with the beam delivered by the tandem accelerator of the Wright Nuclear Structure Laboratory at an incident beam energy of 60 MeV. Our experiment was aimed at the investigation of collective excitations built on the unnatural parity, ν h11/2 orbital, specifically by measuring the B(E2) values of decays from the excited levels built on this intrinsic structure, using the Doppler Recoil Distance Method. We report lifetimes and associated transition probabilities for decays from the 15/2- and the 19/2- states in 107Cd and the first measurement of the 15/2- state in 103Pd. These results suggest that neither a simple rotational or vibrational interpretation is sufficient to explain the observed structures. © 2006 American Institute of Physics.
Resumo:
Lifetimes for decays linking near-yrast states in 107Cd have been measured using the recoil distance method (RDM). The nucleus of interest was populated via the 98Mo(12C,3n)107Cd fusion-evaporation reaction at an incident beam energy of 60 MeV. From the measured lifetimes, transition probabilities have been deduced and compared with the theoretical B(E2) values for limiting cases of harmonic vibrational and axially deformed rotational systems. Our initial results suggest a rotor-like behaviour for the structure based on the unnatural-parity, h11/2 orbital in 107Cd, providing further evidence for the role of this 'shape-polarizing' orbital in stabilizing the nuclear deformation in the A ∼ 100 transitional region. © 2005 IOP Publishing Ltd.
Resumo:
We are investigating the use of flywheels for energy storage. Flywheel devices need to be of high efficiency and an important source of losses is the bearings. In addition, the requirement is for the devices to have long lifetimes with minimal or no maintenance. Conventional rolling element bearings can and have been used, but a non-contact bearing, such as a superconducting magnetic bearing, is expected to have a longer lifetime and lower losses. At Cambridge we have constructed a flywheel system. Designed to run in vacuum this incorporates a 40kg flywheel supported on superconducting magnetic bearings. The production device will be a 5kW device storing 5 kWh of retrievable energy at 50,000 rpm. The Cambridge system is being developed in parallel with a similar device supported on a conventional bearing. This will allow direct performance comparisons. Although superconducting bearings are increasingly well understood, of major importance are the cryogenics and special attention is being paid to methods of packaging and insulating the superconductors to cut down radiation losses. The work reported here is part of a three-year program of work supported by the EPSRC. © 1999 IEEE.
Resumo:
Social and political concerns are frequently reflected in the design of school buildings, often in turn leading to the development of technical innovations. One example is a recurrent concern about the physical health of the nation, which has at several points over the last century prompted new design approaches to natural light and ventilation. The most critical concern of the current era is the global, rather than the indoor, environment. The resultant political focus on mitigating climate change has resulted in new regulations, and in turn considerable technical changes in building design and construction. The vanguard of this movement has again been in school buildings, set the highest targets for reducing operational carbon by the previous Government. The current austerity measures have moved the focus to the refurbishment and retrofit of existing buildings, in order to bring them up to the exacting new standards. Meanwhile there is little doubt that climate change is happening already, and that the impacts will be considerable. Climate scientists have increasing confidence in their predictions for the future; if today’s buildings are to be resilient to these changes, building designers will need to understand and design for the predicted climates in order to continue to provide comfortable and healthy spaces through the lifetimes of the buildings. This paper describes the decision processes, and the planned design measures, for adapting an existing school for future climates. The project is at St Faith’s School in Cambridge, and focuses on three separate buildings: a large Victorian block built as a substantial domestic dwelling in 1885, a smaller single storey 1970s block with a new extension, and an as-yet unbuilt single storey block designed to passivhaus principles and using environmentally friendly materials. The implications of climate change have been considered for the three particular issues of comfort, construction, and water, as set out in the report on Design for Future Climate: opportunities for adaptation in the built environment (Gething, 2010). The adaptation designs aim to ensure each of the three very different buildings remains fit for purpose throughout the 21st century, continuing to provide a healthy environment for the children. A forth issue, the reduction of carbon and the mitigation of other negative environmental impacts of the construction work, is also a fundamental aim for the school and the project team. Detailed modelling of both the operational and embodied energy and carbon of the design options is therefore being carried out, in order that the whole life carbon costs of the adaptation design options may be minimised. The project has been funded by the Technology Strategy Board as part of the Design for Future Climates programme; the interdisciplinary team includes the designers working on the current school building projects and the school bursar, supported by researchers from the University of Cambridge Centre for Sustainable Development. It is hoped that lessons from the design process, as well as the solutions themselves, will be transferable to other buildings in similar climatic regions.
Resumo:
The fabrication and functionality of a 21 cm graphene-based transverse electron emission display panel is presented. A screen-printed triode edge electron emission geometry has been developed based on chemical vapor deposited (CVD) graphene supported on vertically aligned carbon nanotubes (CNT) necessary to minimize electrostatic shielding induced by the proximal bulk substrate. Integrated ZnO tetrapod electron scatterers have been shown to increase the emission efficiency by more than 90%. Simulated electron trajectories validate the observed emission characteristics with driving voltages less than 60 V. Fabricated display panels have shown real-time video capabilities that are hysteresis free (<0.2%), have extremely stable lifetimes (<3% variation over 10 h continuous operation) in addition to rapid temporal responses (<1 ms). © 2013 Elsevier Ltd. All rights reserved.
Resumo:
We have performed a comparative study of ultrafast charge carrier dynamics in a range of III-V nanowires using optical pump-terahertz probe spectroscopy. This versatile technique allows measurement of important parameters for device applications, including carrier lifetimes, surface recombination velocities, carrier mobilities and donor doping levels. GaAs, InAs and InP nanowires of varying diameters were measured. For all samples, the electronic response was dominated by a pronounced surface plasmon mode. Of the three nanowire materials, InAs nanowires exhibited the highest electron mobilities of 6000 cm² V⁻¹ s⁻¹, which highlights their potential for high mobility applications, such as field effect transistors. InP nanowires exhibited the longest carrier lifetimes and the lowest surface recombination velocity of 170 cm s⁻¹. This very low surface recombination velocity makes InP nanowires suitable for applications where carrier lifetime is crucial, such as in photovoltaics. In contrast, the carrier lifetimes in GaAs nanowires were extremely short, of the order of picoseconds, due to the high surface recombination velocity, which was measured as 5.4 × 10⁵ cm s⁻¹. These findings will assist in the choice of nanowires for different applications, and identify the challenges in producing nanowires suitable for future electronic and optoelectronic devices.