161 resultados para parametric oscillators and amplifiers
Resumo:
An integrated semiconductor optical amplifier/distributed feedback (SOA/DFB) laser that show promise as a simple all-optical wavelength conversion device together with useful simultaneous functions such as 2R regeneration and the ability to remove a wavelength identifying tone is presented. Wavelength conversion performance at 20Gb/s and 40Gb/s can be obtained with this laser.
Resumo:
This paper uses dissipativity theory to provide the system-theoretic description of a basic oscillation mechanism. Elementary input-output tools are then used to prove the existence and stability of limit cycles in these "oscillators". The main benefit of the proposed approach is that it is well suited for the analysis and design of interconnections, thus providing a valuable mathematical tool for the study of networks of coupled oscillators.
Resumo:
Numerous structures uplift under the influence of strong ground motion. Although many researchers have investigated the effects of base uplift on very stiff (ideally rigid) structures, the rocking response of flexible structures has received less attention. Related practical analysis methods treat these structures with simplified 'equivalent' oscillators without directly addressing the interaction between elasticity and rocking. This paper addresses the fundamental dynamics of flexible rocking structures. The nonlinear equations of motion, derived using a Lagrangian formulation for large rotations, are presented for an idealized structural model. Particular attention is devoted to the transition between successive phases; a physically consistent classical impact framework is utilized alongside an energy approach. The fundamental dynamic properties of the flexible rocking system are compared with those of similar linear elastic oscillators and rigid rocking structures, revealing the distinct characteristics of flexible rocking structures. In particular, parametric analysis is performed to quantify the effect of elasticity on uplift, overturning instability, and harmonic response, from which an uplifted resonance emerges. The contribution of stability and strength to the collapse of flexible rocking structures is discussed. © 2012 John Wiley & Sons, Ltd.
Resumo:
This paper employs dissipativity theory for the global analysis of limit cycles in particular dynamical systems of possibly high dimension. Oscillators are regarded as open systems that satisfy a particular dissipation inequality. It is shown that this characterization has implications for the global stability analysis of limit cycle oscillations: i) in isolated oscillators, ii) in interconnections of oscillators, and iii) for the global synchrony analysis in interconnections of identical oscillators. © 2007 IEEE.
Resumo:
Spatial normalisation is a key element of statistical parametric mapping and related techniques for analysing cohort statistics on voxel arrays and surfaces. The normalisation process involves aligning each individual specimen to a template using some sort of registration algorithm. Any misregistration will result in data being mapped onto the template at the wrong location. At best, this will introduce spatial imprecision into the subsequent statistical analysis. At worst, when the misregistration varies systematically with a covariate of interest, it may lead to false statistical inference. Since misregistration generally depends on the specimen's shape, we investigate here the effect of allowing for shape as a confound in the statistical analysis, with shape represented by the dominant modes of variation observed in the cohort. In a series of experiments on synthetic surface data, we demonstrate how allowing for shape can reveal true effects that were previously masked by systematic misregistration, and also guard against misinterpreting systematic misregistration as a true effect. We introduce some heuristics for disentangling misregistration effects from true effects, and demonstrate the approach's practical utility in a case study of the cortical bone distribution in 268 human femurs.
Resumo:
Circadian oscillators provide rhythmic temporal cues for a range of biological processes in plants and animals, enabling anticipation of the day/night cycle and enhancing fitness-associated traits. We have used engineering models to understand the control principles of a plant's response to seasonal variation. We show that the seasonal changes in the timing of circadian outputs require light regulation via feed-forward loops, combining rapid light-signaling pathways with entrained circadian oscillators. Linear time-invariant models of circadian rhythms were computed for 3,503 circadian-regulated genes and for the concentration of cytosolic-free calcium to quantify the magnitude and timing of regulation by circadian oscillators and light-signaling pathways. Bioinformatic and experimental analysis show that rapid light-induced regulation of circadian outputs is associated with seasonal rephasing of the output rhythm. We identify that external coincidence is required for rephasing of multiple output rhythms, and is therefore important in general phase control in addition to specific photoperiod-dependent processes such as flowering and hypocotyl elongation. Our findings uncover a fundamental design principle of circadian regulation, and identify the importance of rapid light-signaling pathways in temporal control.
Resumo:
The use of tapered waveguide lasers and amplifiers for enhanced picosecond pulse generation has led to order-of-magnitude peak power and pulse energy improvements. Monolithic pulse generation schemes have so far relied on a double-tapered bow-tie structure. The modeling of tapered lasers has so far been limited to steady-state operation or has lacked experimental comparison. This paper considers both experimentally and theoretically the gain-switched performance of bow-tie lasers of various taper angles. The role of transverse-mode spatial hole burning in tapered waveguide lasers is thereby investigated.
Resumo:
Quantum well intermixing is a key technique for photonic integration. The intermixing of InP/InGaAs/InGaAsP material involving the deposition of a layer of sputtered SiO2 on the semiconductor surface, followed by thermal annealing has allowed good control of the intermixing process and has been used to fabricate extended cavity lasers. This will be used for optimization of the performance of optical switches consisting of passive components, modulators and amplifiers.
Resumo:
We compare and contrast the effects of two distinctly different mechanisms of coupling (mechanical and electrical) on the parametric sensitivity of micromechanical sensors utilizing mode localization for sensor applications. For the first time, the strong correlation between mode localization and the phenomenon of 'eigenvalue loci-veering' is exploited for accurate quantification of the strength of internal coupling in mode localized sensors. The effects of capacitive coupling-spring tuning on the parametric sensitivity of electrically coupled resonators utilizing this sensing paradigm is also investigated and a mass sensor with sensitivity tunable by over 400% is realized. ©2009 IEEE.
Resumo:
We compare experimental results showing stable dissipative-soliton solutions exist in mode-locked lasers with ultra-large normal dispersion (as large as 21.5 ps2), with both the analytic framework provided by Haus' master-equation and full numerical simulations. © 2010 Optical Society of America.