41 resultados para paradigm shift
Resumo:
Model Predictive Control (MPC) represents a major paradigm shift in the field of automatic control. This radically affects synthesis techniques (illustrated by control of an unstable system) and underlying concepts (illustrated by control of a multivariable system), as well as lifting the control engineer's focus from prescriptions to specifications ('what' not 'how', illustrated by emulation of a conventional autopilot). Part of the objective of this paper is to emphasize the significance of this paradigm shift. Another part is to consider the fact that this shift was missed for many years by the academic community, and what this tells us about teaching and research in the field.
Resumo:
This paper reviews the development of computational fluid dynamics (CFD) specifically for turbomachinery simulations and with a particular focus on application to problems with complex geometry. The review is structured by considering this development as a series of paradigm shifts, followed by asymptotes. The original S1-S2 blade-blade-throughflow model is briefly described, followed by the development of two-dimensional then three-dimensional blade-blade analysis. This in turn evolved from inviscid to viscous analysis and then from steady to unsteady flow simulations. This development trajectory led over a surprisingly small number of years to an accepted approach-a 'CFD orthodoxy'. A very important current area of intense interest and activity in turbomachinery simulation is in accounting for real geometry effects, not just in the secondary air and turbine cooling systems but also associated with the primary path. The requirements here are threefold: capturing and representing these geometries in a computer model; making rapid design changes to these complex geometries; and managing the very large associated computational models on PC clusters. Accordingly, the challenges in the application of the current CFD orthodoxy to complex geometries are described in some detail. The main aim of this paper is to argue that the current CFD orthodoxy is on a new asymptote and is not in fact suited for application to complex geometries and that a paradigm shift must be sought. In particular, the new paradigm must be geometry centric and inherently parallel without serial bottlenecks. The main contribution of this paper is to describe such a potential paradigm shift, inspired by the animation industry, based on a fundamental shift in perspective from explicit to implicit geometry and then illustrate this with a number of applications to turbomachinery.
Resumo:
Tissue engineering offers a paradigm shift in the treatment of back pain. Engineered intervertebral discs could replace degenerated tissue and overcome the limitations of current treatments, which substantially alter the biomechanical properties of the spine. The centre of the disc, the nucleus pulposus, is an amorphous gel with a large bound water content and it can resist substantial compressive loads. Due to similarities in their compositions, hydrogels have frequently been considered as substitutes for the nucleus pulposus. However, there has been limited work characterising the time-dependent mechanical behaviour of hydrogel scaffolds for nucleus pulposus tissue engineering. Poroelastic behaviour, which plays a key role in nutrient transport, is of particular importance. Here, we investigate the time-dependent mechanical properties of gelatin and agar hydrogels and of gelatin-agar composites. The time-dependent properties of these hydrogels are explored using viscoelastic and poroelastic frameworks. Several gel formulations demonstrate comparable equilibrium elastic behaviour to the nucleus pulposus under unconfined compression, but permeability values that are much greater than those of the native tissue. A range of time-dependent responses are observed in the composite gels examined, presenting the opportunity for targeted design of custom hydrogels with combinations of mechanical properties optimized for tissue engineering applications. © 2011 Elsevier Ltd.
Resumo:
The field of Artificial Intelligence, which started roughly half a century ago, has a turbulent history. In the 1980s there has been a major paradigm shift towards embodiment. While embodied artificial intelligence is still highly diverse, changing, and far from "theoretically stable", a certain consensus about the important issues and methods has been achieved or is rapidly emerging. In this non-technical paper we briefly characterize the field, summarize its achievements, and identify important issues for future research. One of the fundamental unresolved problems has been and still is how thinking emerges from an embodied system. Provocatively speaking, the central issue could be captured by the question "How does walking relate to thinking?" © Springer-Verlag Berlin Heidelberg 2004.