111 resultados para optimal composition
Resumo:
A new method for the optimal design of Functionally Graded Materials (FGM) is proposed in this paper. Instead of using the widely used explicit functional models, a feature tree based procedural model is proposed to represent generic material heterogeneities. A procedural model of this sort allows more than one explicit function to be incorporated to describe versatile material gradations and the material composition at a given location is no longer computed by simple evaluation of an analytic function, but obtained by execution of customizable procedures. This enables generic and diverse types of material variations to be represented, and most importantly, by a reasonably small number of design variables. The descriptive flexibility in the material heterogeneity formulation as well as the low dimensionality of the design vectors help facilitate the optimal design of functionally graded materials. Using the nature-inspired Particle Swarm Optimization (PSO) method, functionally graded materials with generic distributions can be efficiently optimized. We demonstrate, for the first time, that a PSO based optimizer outperforms classical mathematical programming based methods, such as active set and trust region algorithms, in the optimal design of functionally graded materials. The underlying reason for this performance boost is also elucidated with the help of benchmarked examples. © 2011 Elsevier Ltd. All rights reserved.
Resumo:
We present a statistical model-based approach to signal enhancement in the case of additive broadband noise. Because broadband noise is localised in neither time nor frequency, its removal is one of the most pervasive and difficult signal enhancement tasks. In order to improve perceived signal quality, we take advantage of human perception and define a best estimate of the original signal in terms of a cost function incorporating perceptual optimality criteria. We derive the resultant signal estimator and implement it in a short-time spectral attenuation framework. Audio examples, references, and further information may be found at http://www-sigproc.eng.cam.ac.uk/~pjw47.
Resumo:
The sensor scheduling problem can be formulated as a controlled hidden Markov model and this paper solves the problem when the state, observation and action spaces are continuous. This general case is important as it is the natural framework for many applications. The aim is to minimise the variance of the estimation error of the hidden state w.r.t. the action sequence. We present a novel simulation-based method that uses a stochastic gradient algorithm to find optimal actions. © 2007 Elsevier Ltd. All rights reserved.
Resumo:
Sequential Monte Carlo methods, also known as particle methods, are a widely used set of computational tools for inference in non-linear non-Gaussian state-space models. In many applications it may be necessary to compute the sensitivity, or derivative, of the optimal filter with respect to the static parameters of the state-space model; for instance, in order to obtain maximum likelihood model parameters of interest, or to compute the optimal controller in an optimal control problem. In Poyiadjis et al. [2011] an original particle algorithm to compute the filter derivative was proposed and it was shown using numerical examples that the particle estimate was numerically stable in the sense that it did not deteriorate over time. In this paper we substantiate this claim with a detailed theoretical study. Lp bounds and a central limit theorem for this particle approximation of the filter derivative are presented. It is further shown that under mixing conditions these Lp bounds and the asymptotic variance characterized by the central limit theorem are uniformly bounded with respect to the time index. We demon- strate the performance predicted by theory with several numerical examples. We also use the particle approximation of the filter derivative to perform online maximum likelihood parameter estimation for a stochastic volatility model.
Resumo:
This paper explores the use of Monte Carlo techniques in deterministic nonlinear optimal control. Inter-dimensional population Markov Chain Monte Carlo (MCMC) techniques are proposed to solve the nonlinear optimal control problem. The linear quadratic and Acrobot problems are studied to demonstrate the successful application of the relevant techniques.