103 resultados para optical transmission


Relevância:

70.00% 70.00%

Publicador:

Resumo:

A novel integration method for the production of cost-effective optoelectronic printed circuit boards (OE PCBs) is presented. The proposed integration method allows fabrication of OE PCBs with manufacturing processes common to the electronics industry while enabling direct attachment of electronic components onto the board with solder reflow processes as well as board assembly with automated pick-and-place tools. The OE PCB design is based on the use of polymer multimode waveguides, end-fired optical coupling schemes, and simple electro-optic connectors, eliminating the need for additional optical components in the optical layer, such as micro-mirrors and micro-lenses. A proof-of-concept low-cost optical transceiver produced with the proposed integration method is presented. This transceiver is fabricated on a low-cost FR4 substrate, comprises a polymer Y-splitter together with the electronic circuitry of the transmitter and receiver modules and achieves error-free 10-Gb/s bidirectional data transmission. Theoretical studies on the optical coupling efficiencies and alignment tolerances achieved with the employed end-fired coupling schemes are presented while experimental results on the optical transmission characteristics, frequency response, and data transmission performance of the integrated optical links are reported. The demonstrated optoelectronic unit can be used as a front-end optical network unit in short-reach datacommunication links. © 2011-2012 IEEE.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper presents a novel platform for the formation of cost-effective PCB-integrated optical waveguide sensors. The sensor design relies on the use of multimode polymer waveguides that can be formed directly on standard PCBs and commercially-available chemical dyes, enabling the integration of all essential sensor components (electronic, photonic, chemical) on low-cost substrates. Moreover, it enables the detection of multiple analytes from a single device by employing waveguide arrays functionalised with different chemical dyes. The devices can be manufactured with conventional methods of the PCB industry, such as solder-reflow processes and pick-and-place assembly techniques. As a proof of principle, a PCB-integrated ammonia gas sensor is fabricated on a FR4 substrate. The sensor operation relies on the change of the optical transmission characteristics of chemically functionalised optical waveguides in the presence of ammonia molecules. The fabrication and assembly of the sensor unit, as well as fundamental simulation and characterisation studies, are presented. The device achieves a sensitivity of approximately 30 ppm and a linear response up to 600 ppm at room temperature. Finally, the potential to detect multiple analytes from a single device is demonstrated using principal-component analysis. © 1983-2012 IEEE.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We experimentally demonstrate for the first time a nanoscale resistive random access memory (RRAM) electronic device integrated with a plasmonic waveguide providing the functionality of optical readout. The device fabrication is based on silicon on insulator CMOS compatible approach of local oxidation of silicon, which enables the realization of RRAM and low optical loss channel photonic waveguide at the same fabrication step. This plasmonic device operates at telecom wavelength of 1.55 μm and can be used to optically read the logic state of a memory by measuring two distinct levels of optical transmission. The experimental characterization of the device shows optical bistable behavior between these levels of transmission in addition to well-defined hysteresis. We attribute the changes in the optical transmission to the creation of a nanoscale absorbing and scattering metallic filament in the amorphous silicon layer, where the plasmonic mode resides.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In a surface stabilized ferroelectric liquid crystal cell, optical transmission oscillations have been revealed accompanying mechanical vibrations caused by fast field reversal. Special bookshelf textures, so-called "rainbow", were used in the experiments. Temperature dependences of the oscillation parameters have been studied. The temperature dependence of the oscillation frequency suggests that the some oscillation resonances correspond to modes of the liquid crystals.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We report a novel utilization of periodic arrays of carbon nanotubes in the realization of diffractive photonic crystal lenses. Carbon nanotube arrays with nanoscale dimensions (lattice constant 400 nm and tube radius 50 nm) displayed a negative refractive index in the optical regime where the wavelength is of the order of array spacing. A detailed computational analysis of band gaps and optical transmission through the nanotubes based planar, convex and concave shaped lenses was performed. Due to the negative-index these lenses behaved in an opposite fashion compared to their conventional counter parts. A plano-concave lens was established and numerically tested, displaying ultra-small focal length of 1.5 μm (∼2.3 λ) and a near diffraction-limited spot size of 400 nm (∼0.61 λ). © 2012 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We demonstrate a record 150km transmission of microwave signals by a directly-modulated radio-over-fiber link with a bit-error-rate of less than 10-12. Cascaded semiconductor optical amplifiers are employed in this link to extend the transmission link length. © 2005 Optical Society of America.