207 resultados para optical interconnections
Resumo:
In a fibre-optic communication network, the wavelength-division multiplexing (WDM) technique enables an expansion of the data-carrying capacity of optical fibres. This can be achieved by transmitting different channels on a single optical fibre, with each channel modulating a different wavelength. In order to access and manipulate these channels at a node of the network, a compact holographic optical switch is designed, modelled, and constructed. The structure of such a switch consists of a series of optical components which are used to collimate the beam from the input, de-multiplex each individual wavelength into separated channels, manipulate the separated channels, and reshape the beam to the output. A spatial light modulator (SLM) is crucial in this system, offering control and flexibility at the channel manipulation stage, and providing the ability to redirect light into the desired output fibre. This is achieved by the use of a 2-D analogue phase computer generated hologram (CGH) based on liquid crystal on silicon (LCOS) technology. © 2011 Copyright Society of Photo-Optical Instrumentation Engineers (SPIE).
Resumo:
A scalable polymer waveguide-based regenerative optical bus architecture for use in board-level communications is presented. As a proof-of-principle demonstration, a 4-channel polymer bus formed on a FR4 substrate providing 10 Gb/s/channel data transmission is reported. © 2012 OSA.
Resumo:
A 4-channel polymeric optical bus module suitable for use in board-level interconnections is presented. Low-loss and low-crosstalk module performance is achieved, while -1 dB alignment tolerances better than ± 8 μm are demonstrated. © 2012 OSA.
Resumo:
A 4-channel polymeric optical bus module suitable for use in board-levelinterconnections is presented. Low-loss and low-crosstalk module performance is achieved, while-1 dB alignment tolerances better than ± 8 μm are demonstrated. © OSA 2012.
Resumo:
A scalable polymer waveguide-based regenerative optical bus architecture for use in board-level communications is presented. As a proof-of-principle demonstration, a 4-channel polymer bus formed on a FR4 substrate providing 10 Gb/s/channel data transmission is reported. © 2012 OSA.
Resumo:
Optical technologies have received large interest in recent years for use in board-level interconnects. Polymer multimode waveguides in particular, constitute a promising technology for high-capacity optical backplanes as they can be cost-effectively integrated onto conventional printed circuit boards (PCBs). This paper presents the first optical backplane demonstrator based on the use of PCB-integrated polymer multimode waveguides and a regenerative shared bus architecture. The backplane demonstrator is formed with commercially-available low-cost electronic and photonic components onto conventional FR4 substrates and comprises two opto-electronic (OE) bus modules interconnected via a prototype regenerator unit. The system enables interconnection between the connected cards over four optical channels, each operating at 10 Gb/s. Bus extension is achieved by cascading OE bus modules via 3R regenerator units, overcoming therefore the inherent limitation of optical bus topologies in the maximum number of cards that can be connected to the bus. Details of the design, fabrication, and assembly of the different parts of this optical bus backplane are presented and related optical and data transmission characterisation studies are reported. The optical layer of the OE bus modules comprises a four-channel three-card waveguide layout that is compatible with VCSEL/PD arrays and ribbon fibres. All on-board optical paths exhibit insertion losses below 13 dB and intra-channel crosstalk lower than -29 dB. The robustness of the signal distribution from the bus inputs to all respective bus output ports in the presence of input misalignment is demonstrated, while 1 dB input alignment tolerances of approximately ±10 μm are obtained. The electrical layer of the OE bus modules comprises the essential driving circuitry for 1×4 VCSEL and PD arrays and the corresponding control and power regulation circuits. The interface between the optical and electrical layers of the bus modules is achieved with simple OE connectors that enable end-fired optical coupling into and out of the on-board polymer waveguides. The backplane demonstrator achieves error-free (BER < 10-12) 10 Gb/s data transmission over each optical channel, enabling therefore, an aggregate interconnection capacity of 40 Gb/s between any connected cards. © 1983-2012 IEEE.