31 resultados para online updating


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a new online multi-classifier boosting algorithm for learning object appearance models. In many cases the appearance model is multi-modal, which we capture by training and updating multiple strong classifiers. The proposed algorithm jointly learns the classifiers and a soft partitioning of the input space, defining an area of expertise for each classifier. We show how this formulation improves the specificity of the strong classifiers, allowing simultaneous location and pose estimation in a tracking task. The proposed online scheme iteratively adapts the classifiers during tracking. Experiments show that the algorithm successfully learns multi-modal appearance models during a short initial training phase, subsequently updating them for tracking an object under rapid appearance changes. © 2010 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Changepoints are abrupt variations in the generative parameters of a data sequence. Online detection of changepoints is useful in modelling and prediction of time series in application areas such as finance, biometrics, and robotics. While frequentist methods have yielded online filtering and prediction techniques, most Bayesian papers have focused on the retrospective segmentation problem. Here we examine the case where the model parameters before and after the changepoint are independent and we derive an online algorithm for exact inference of the most recent changepoint. We compute the probability distribution of the length of the current ``run,'' or time since the last changepoint, using a simple message-passing algorithm. Our implementation is highly modular so that the algorithm may be applied to a variety of types of data. We illustrate this modularity by demonstrating the algorithm on three different real-world data sets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We address the problem of face recognition by matching image sets. Each set of face images is represented by a subspace (or linear manifold) and recognition is carried out by subspace-to-subspace matching. In this paper, 1) a new discriminative method that maximises orthogonality between subspaces is proposed. The method improves the discrimination power of the subspace angle based face recognition method by maximizing the angles between different classes. 2) We propose a method for on-line updating the discriminative subspaces as a mechanism for continuously improving recognition accuracy. 3) A further enhancement called locally orthogonal subspace method is presented to maximise the orthogonality between competing classes. Experiments using 700 face image sets have shown that the proposed method outperforms relevant prior art and effectively boosts its accuracy by online learning. It is shown that the method for online learning delivers the same solution as the batch computation at far lower computational cost and the locally orthogonal method exhibits improved accuracy. We also demonstrate the merit of the proposed face recognition method on portal scenarios of multiple biometric grand challenge.