221 resultados para multiple-bit upset
Resumo:
An 8 × 8 pipelined parallel multiplier which uses the Dadda scheme is presented. The multiplier has been implemented in a 3-μm n-well CMOS process with two layers of metal using a standard cell automatic placement and routing program. The design uses a form of pipelined carry look-ahead adder in the final stage of summation, thus providing a significant contribution to the high performance of the multiplier. The design is expected to operate at a clock frequency of at least 50 MHz and has a flush time of seven clock cycles. The design illustrates a possible method of implementing an irregular architecture in VLSI using multiple levels of low-resistance, low-capacitance interconnect and automated layout techniques.
Resumo:
In this paper we report the design of high room temperature photoluminescence internal efficiency InGaN-based quantum well structures emitting in the near ultraviolet at 380 nm. To counter the effects of nonradiative recombination the quantum wells were designed to have a large indium fraction, high barriers, and a small quantum well thickness. To minimize the interwell and interbarrier thickness fluctuations we used Al0.2In0.005Ga0.795N barriers, where the inclusion of the small fraction of indium was found to lead to fewer structural defects and a reduction in the layer thickness fluctuations. This approach has led us to achieve, for an In0.08Ga0.92N/Al0.2In0.005Ga0.795N multiple quantum well structure with a well width of 1.5 nm, a photoluminescence internal efficiency of 67% for peak emission at 382 nm at room temperature. (c) 2007 American Institute of Physics.
Resumo:
Circadian oscillators provide rhythmic temporal cues for a range of biological processes in plants and animals, enabling anticipation of the day/night cycle and enhancing fitness-associated traits. We have used engineering models to understand the control principles of a plant's response to seasonal variation. We show that the seasonal changes in the timing of circadian outputs require light regulation via feed-forward loops, combining rapid light-signaling pathways with entrained circadian oscillators. Linear time-invariant models of circadian rhythms were computed for 3,503 circadian-regulated genes and for the concentration of cytosolic-free calcium to quantify the magnitude and timing of regulation by circadian oscillators and light-signaling pathways. Bioinformatic and experimental analysis show that rapid light-induced regulation of circadian outputs is associated with seasonal rephasing of the output rhythm. We identify that external coincidence is required for rephasing of multiple output rhythms, and is therefore important in general phase control in addition to specific photoperiod-dependent processes such as flowering and hypocotyl elongation. Our findings uncover a fundamental design principle of circadian regulation, and identify the importance of rapid light-signaling pathways in temporal control.
Resumo:
The non-deterministic relationship between Bit Error Rate and Packet Error Rate is demonstrated for an optical media access layer in common use. We show that frequency components of coded, non-random data can cause this relationship. © 2005 Optical Society of America.
Resumo:
A 2-D Hermite-Gaussian square launch is demonstrated to show improved systems capacity over multimode fiber links. It shows a bandwidth improvement over both center and offset launches and exhibits ±5 μm misalignment tolerance. © 2011 Optical Society of America.