276 resultados para micro-channels
Resumo:
To investigate the flow control potential of micro-vortex generators for supersonic mixed-compression inlets, a basic model experiment has been designed which combines a normal shock wave with a subsonic diffuser. The diffuser is formed by a simple expansion corner, with a divergence angle of 6 degrees. The diffuser entry Mach numbers were M=1.3 and M=1.5 and a number of shock locations relative to the corner position were tested. Flow control was applied in the form of counter-rotating micro-vanes with heights of approximately 20% of boundary layer thickness. Furthermore, corner fences where employed to reduce sidewall effects. It was found that micro-vortex generators were able to significantly reduce the extent of flow separation under all conditions, but could not eliminate it altogether. Corner fences also demonstrated potential for improving the flow in rectangular cross section channels and the combination of corner fences with micro-vortex generators was found to give the greatest benefits. At M=1.3 the combination of corner fences and micro-vanes placed close to the diffuser entry could prevent separation for a wide range of conditions. At the higher diffuser entry Mach number the benefits of flow control were less significant although a reduction of separation size and an improved pressure recovery was observed. It is thought that micro-vortex generators can have significant flow control potential if they are placed close to the expected separation onset and when the adverse pressure gradient is not too far above the incipient separation level. The significant beneficial effects of corner fences warrant a more comprehensive further investigation. It is thought that the control methods suggested here are capable of reducing the bleed requirement on an inlet, which could provide significant performance advantages.
Resumo:
We have studied the optical properties of a series of InGaN/AlInGaN 10-period multiple quantum wells (MQW) with differing well thickness grown by metal-organic vapor-phase epitaxy that emit at around 380 nm. The aim of this investigation was to optimise the room temperature internal quantum efficiency, thus the quantum well (QW) thicknesses were accordingly chosen so that the overlap of the electron/hole wave function was maximised. At low temperature, we observed a reduction of the photo luminescence decay time with decreasing well width in line with the theoretical predictions. For a structure with well thicknesses of 1.5 nm, we measured a photoluminescence internal quantum efficiency of 67% at room temperature with a peak emission wavelength of 382 nm. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
This paper describes coupled-effect simulations of smart micro gas-sensors based on standard BiCMOS technology. The smart sensor features very low power consumption, high sensitivity and potential low fabrication cost achieved through full CMOS integration. For the first time the micro heaters are made of active CMOS elements (i.e. MOSFET transistors) and embedded in a thin SOI membrane consisting of Si and SiO2 thin layers. Micro gas-sensors such as chemoresistive, microcalorimeteric and Pd/polymer gate FET sensors can be made using this technology. Full numerical analyses including 3D electro-thermo-mechanical simulations, in particular stress and deflection studies on the SOI membranes are presented. The transducer circuit design and the post-CMOS fabrication process, which includes single sided back-etching, are also reported.
Resumo:
This paper describes a new generation of integrated solid-state gas-sensors embedded in SOI micro-hotplates. The micro-hotplates lie on a SOI membrane and consist of MOSFET heaters that elevate the operating temperature, through self-heating, of a gas sensitive material. These sensors are fully compatible with SOI CMOS or BiCMOS technologies, offer ultra-low power consumption (under 100 mW), high sensitivity, low noise, low unit cost, reproducibility and reliability through the use of on-chip integration. In addition, the new integrated sensors offer a nearly uniform temperature distribution over the active area at its operating temperatures at up to about 300-350°C. This makes SOI-based gas-sensing devices particularly attractive for use in handheld battery-operated gas monitors. This paper reports on the design of a chemo-resistive gas sensor and proposes for the first time an intelligent SOI membrane microcalorimeter using active micro-FET heaters and temperature sensors. A comprehensive set of numerical and analogue simulations is also presented including complex 2D and 3D electro-thermal numerical analyses. © 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Alumina ceramic, Al2O3, presents a challenge to laser micro-structuring due to its neglible linear absorption coefficient in the optical region coupled with its physical properties such as extremely high melting point and high thermal conductivity. In this work, we demonstrate clean micro-structuring of alumina using NIR (λ=775 nm) ultrafast optical pulses with 180 fs duration at 1kHz repetition rate. Sub-picosecond pulses can minimise thermal effects along with collateral damage when processing conditions are optimised, consequently, observed edge quality is excellent in this regime. We present results of changing micro-structure and morphology during ultrafast processing along with measured ablation rates and characteristics of developing surface relief. Initial crystalline phase (alpha Al2O3) is unaltered by femtosecond processing. Multi-pulse ablation threshold fluence Fth, ∼ 1.1 Jcm-2 and at low fluence ∼ 3 Jcm -2, independent of machined depth, there appears to remain a ∼ 2 μm thick rapidly re-melted layer. On the other hand, micro-structuring at high fluence F ∼ 21 Jcm-2 shows no evidence of melting and the machined surface is covered with a fine layer of debris, loosely attached. The nature of debris produced by femtosecond ablation has been investigated and consists mainly of alumina nanoparticles with diameters from 20 nm to 1 micron with average diameter ∼ 300 nm. Electron diffraction shows these particles to be essentially single crystal in nature. By developing a holographic technique, we have demonstrated periodic micrometer level structuring on polished samples of this extremely hard material.