41 resultados para intrinsic and extrinsic InP


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We use polarization-resolved and temperature-dependent photoluminescence of single zincblende (ZB) (cubic) and wurtzite (WZ) (hexagonal) InP nanowires to probe differences in selection rules and bandgaps between these two semiconductor nanostructures. The WZ nanowires exhibit a bandgap 80 meV higher in energy than the ZB nanowires. The temperature dependence of the PL is similar but not identical for the WZ and ZB nanowires. We find that ZB nanowires exhibit strong polarization parallel to the nanowire axis, while the WZ nanowires exhibit polarized emission perpendicular to the nanowire axis. This behavior is interpreted in terms of the different selection rules for WZ and ZB crystal structures. © 2007 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Calibration of a camera system is a necessary step in any stereo metric process. It correlates all cameras to a common coordinate system by measuring the intrinsic and extrinsic parameters of each camera. Currently, manual calibration of a camera system is the only way to achieve calibration in civil engineering operations that require stereo metric processes (photogrammetry, videogrammetry, vision based asset tracking, etc). This type of calibration however is time-consuming and labor-intensive. Furthermore, in civil engineering operations, camera systems are exposed to open, busy sites. In these conditions, the position of presumably stationary cameras can easily be changed due to external factors such as wind, vibrations or due to an unintentional push/touch from personnel on site. In such cases manual calibration must be repeated. In order to address this issue, several self-calibration algorithms have been proposed. These algorithms use Projective Geometry, Absolute Conic and Kruppa Equations and variations of these to produce processes that achieve calibration. However, most of these methods do not consider all constraints of a camera system such as camera intrinsic constraints, scene constraints, camera motion or varying camera intrinsic properties. This paper presents a novel method that takes all constraints into consideration to auto-calibrate cameras using an image alignment algorithm originally meant for vision based tracking. In this method, image frames are taken from cameras. These frames are used to calculate the fundamental matrix that gives epipolar constraints. Intrinsic and extrinsic properties of cameras are acquired from this calculation. Test results are presented in this paper with recommendations for further improvement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Structured Light Plethysmography (SLP) is a novel non-invasive method that uses structured light to perform pulmonary function testing that does not require physical contact with a patient. The technique produces an estimate of chest wall volume changes over time. A patient is observed continuously by two cameras and a known pattern of light (i.e. structured light) is projected onto the chest using an off-the-shelf projector. Corner features from the projected light pattern are extracted, tracked and brought into correspondence for both camera views over successive frames. A novel self calibration algorithm recovers the intrinsic and extrinsic camera parameters from these point correspondences. This information is used to reconstruct a surface approximation of the chest wall and several novel ideas for 'cleaning up' the reconstruction are used. The resulting volume and derived statistics (e.g. FVC, FEV) agree very well with data taken with a spirometer. © 2010. The copyright of this document resides with its authors.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

It is suggested that previous data indicate 3 major epidemics of kala-azar in Assam between 1875 and 1950, with inter-epidemic periods of 30-45 and 20 years. This deviates from the popular view of regular cycles with a 10-20 year period. A deterministic mathematical model of kala-azar is used to find the simplest explanation for the timing of the 3 epidemics, paying particular attention to the role of extrinsic (drugs, natural disasters, other infectious diseases) versus intrinsic (host and vector dynamics, birth and death rates, immunity) processes in provoking the second. We conclude that, whilst widespread influenza in 1918-1919 may have magnified the second epidemic, intrinsic population processes provide the simplest explanation for its timing and synchrony throughout Assam. The model also shows that the second inter-epidemic period is expected to be shorter than the first, even in the absence of extrinsic agents, and highlights the importance of a small fraction of patients becoming chronically infectious (with post kala-azar dermal leishmaniasis) after treatment during an epidemic.