221 resultados para image thresholding


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents new methods for computing the step sizes of the subband-adaptive iterative shrinkage-thresholding algorithms proposed by Bayram & Selesnick and Vonesch & Unser. The method yields tighter wavelet-domain bounds of the system matrix, thus leading to improved convergence speeds. It is directly applicable to non-redundant wavelet bases, and we also adapt it for cases of redundant frames. It turns out that the simplest and most intuitive setting for the step sizes that ignores subband aliasing is often satisfactory in practice. We show that our methods can be used to advantage with reweighted least squares penalty functions as well as L1 penalties. We emphasize that the algorithms presented here are suitable for performing inverse filtering on very large datasets, including 3D data, since inversions are applied only to diagonal matrices and fast transforms are used to achieve all matrix-vector products.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we propose a new algorithm for reconstructing phase-encoded velocity images of catalytic reactors from undersampled NMR acquisitions. Previous work on this application has employed total variation and nonlinear conjugate gradients which, although promising, yields unsatisfactory, unphysical visual results. Our approach leverages prior knowledge about the piecewise-smoothness of the phase map and physical constraints imposed by the system under study. We show how iteratively regularizing the real and imaginary parts of the acquired complex image separately in a shift-invariant wavelet domain works to produce a piecewise-smooth velocity map, in general. Using appropriately defined metrics we demonstrate higher fidelity to the ground truth and physical system constraints than previous methods for this specific application. © 2013 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The distribution of cortical bone in the proximal femur is believed to be a critical component in determining fracture resistance. Current CT technology is limited in its ability to measure cortical thickness, especially in the sub-millimetre range which lies within the point spread function of today's clinical scanners. In this paper, we present a novel technique that is capable of producing unbiased thickness estimates down to 0.3mm. The technique relies on a mathematical model of the anatomy and the imaging system, which is fitted to the data at a large number of sites around the proximal femur, producing around 17,000 independent thickness estimates per specimen. In a series of experiments on 16 cadaveric femurs, estimation errors were measured as -0.01+/-0.58mm (mean+/-1std.dev.) for cortical thicknesses in the range 0.3-4mm. This compares with 0.25+/-0.69mm for simple thresholding and 0.90+/-0.92mm for a variant of the 50% relative threshold method. In the clinically relevant sub-millimetre range, thresholding increasingly fails to detect the cortex at all, whereas the new technique continues to perform well. The many cortical thickness estimates can be displayed as a colour map painted onto the femoral surface. Computation of the surfaces and colour maps is largely automatic, requiring around 15min on a modest laptop computer.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes to use an extended Gaussian Scale Mixtures (GSM) model instead of the conventional ℓ1 norm to approximate the sparseness constraint in the wavelet domain. We combine this new constraint with subband-dependent minimization to formulate an iterative algorithm on two shift-invariant wavelet transforms, the Shannon wavelet transform and dual-tree complex wavelet transform (DTCWT). This extented GSM model introduces spatially varying information into the deconvolution process and thus enables the algorithm to achieve better results with fewer iterations in our experiments. ©2009 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article presents a new method for acquiring three-dimensional (3-D) volumes of ultrasonic axial strain data. The method uses a mechanically-swept probe to sweep out a single volume while applying a continuously varying axial compression. Acquisition of a volume takes 15-20 s. A strain volume is then calculated by comparing frame pairs throughout the sequence. The method uses strain quality estimates to automatically pick out high quality frame pairs, and so does not require careful control of the axial compression. In a series of in vitro and in vivo experiments, we quantify the image quality of the new method and also assess its ease of use. Results are compared with those for the current best alternative, which calculates strain between two complete volumes. The volume pair approach can produce high quality data, but skillful scanning is required to acquire two volumes with appropriate relative strain. In the new method, the automatic quality-weighted selection of image pairs overcomes this difficulty and the method produces superior quality images with a relatively relaxed scanning technique.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a novel approach using combined features to retrieve images containing specific objects, scenes or buildings. The content of an image is characterized by two kinds of features: Harris-Laplace interest points described by the SIFT descriptor and edges described by the edge color histogram. Edges and corners contain the maximal amount of information necessary for image retrieval. The feature detection in this work is an integrated process: edges are detected directly based on the Harris function; Harris interest points are detected at several scales and Harris-Laplace interest points are found using the Laplace function. The combination of edges and interest points brings efficient feature detection and high recognition ratio to the image retrieval system. Experimental results show this system has good performance. © 2005 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we propose a vision based mobile robot localization strategy. Local scale-invariant features are used as natural landmarks in unstructured and unmodified environment. The local characteristics of the features we use prove to be robust to occlusion and outliers. In addition, the invariance of the features to viewpoint change makes them suitable landmarks for mobile robot localization. Scale-invariant features detected in the first exploration are indexed into a location database. Indexing and voting allow efficient recognition of global localization. The localization result is verified by epipolar geometry between the representative view in database and the view to be localized, thus the probability of false localization will be decreased. The localization system can recover the pose of the camera mounted on the robot by essential matrix decomposition. Then the position of the robot can be computed easily. Both calibrated and un-calibrated cases are discussed and relative position estimation based on calibrated camera turns out to be the better choice. Experimental results show that our approach is effective and reliable in the case of illumination changes, similarity transformations and extraneous features. © 2004 IEEE.