91 resultados para harmonic approximation


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper addresses devising a reliable model-based Harmonic-Aware Matching Pursuit (HAMP) for reconstructing sparse harmonic signals from their compressed samples. The performance guarantees of HAMP are provided; they illustrate that the introduced HAMP requires less data measurements and has lower computational cost compared with other greedy techniques. The complexity of formulating a structured sparse approximation algorithm is highlighted and the inapplicability of the conventional thresholding operator to the harmonic signal model is demonstrated. The harmonic sequential deletion algorithm is subsequently proposed and other sparse approximation methods are evaluated. The superior performance of HAMP is depicted in the presented experiments. © 2013 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper is concerned with the ensemble statistics of the response to harmonic excitation of a single dynamic system such as a plate or an acoustic volume. Random point process theory is employed, and various statistical assumptions regarding the system natural frequencies are compared, namely: (i) Poisson natural frequency spacings, (ii) statistically independent Rayleigh natural frequency spacings, and (iii) natural frequency spacings conforming to the Gaussian orthogonal ensemble (GOE). The GOE is found to be the most realistic assumption, and simple formulae are derived for the variance of the energy of the system under either point loading or rain-on-the-roof excitation. The theoretical results are compared favourably with numerical simulations and experimental data for the case of a mass loaded plate. © 2003 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sequential Monte Carlo methods, also known as particle methods, are a widely used set of computational tools for inference in non-linear non-Gaussian state-space models. In many applications it may be necessary to compute the sensitivity, or derivative, of the optimal filter with respect to the static parameters of the state-space model; for instance, in order to obtain maximum likelihood model parameters of interest, or to compute the optimal controller in an optimal control problem. In Poyiadjis et al. [2011] an original particle algorithm to compute the filter derivative was proposed and it was shown using numerical examples that the particle estimate was numerically stable in the sense that it did not deteriorate over time. In this paper we substantiate this claim with a detailed theoretical study. Lp bounds and a central limit theorem for this particle approximation of the filter derivative are presented. It is further shown that under mixing conditions these Lp bounds and the asymptotic variance characterized by the central limit theorem are uniformly bounded with respect to the time index. We demon- strate the performance predicted by theory with several numerical examples. We also use the particle approximation of the filter derivative to perform online maximum likelihood parameter estimation for a stochastic volatility model.