125 resultados para grafene,cvd,etching,annealing


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Photoluminescence experiments have identified strain as the origin for polarization pinning in vertical cavity surface emitting lasers post-processed by focused ion beam etching. Theoretical models were applied to deduce the strain in devices. Post-annealing was used to optimize polarization pinning.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this article, we describe a simple method to reversibly tune the wetting properties of vertically aligned carbon nanotube (CNT) arrays. Here, CNT arrays are defined as densely packed multi-walled carbon nanotubes oriented perpendicular to the growth substrate as a result of a growth process by the standard thermal chemical vapor deposition (CVD) technique.(1,2) These CNT arrays are then exposed to vacuum annealing treatment to make them more hydrophobic or to dry oxidation treatment to render them more hydrophilic. The hydrophobic CNT arrays can be turned hydrophilic by exposing them to dry oxidation treatment, while the hydrophilic CNT arrays can be turned hydrophobic by exposing them to vacuum annealing treatment. Using a combination of both treatments, CNT arrays can be repeatedly switched between hydrophilic and hydrophobic.(2) Therefore, such combination show a very high potential in many industrial and consumer applications, including drug delivery system and high power density supercapacitors.(3-5) The key to vary the wettability of CNT arrays is to control the surface concentration of oxygen adsorbates. Basically oxygen adsorbates can be introduced by exposing the CNT arrays to any oxidation treatment. Here we use dry oxidation treatments, such as oxygen plasma and UV/ozone, to functionalize the surface of CNT with oxygenated functional groups. These oxygenated functional groups allow hydrogen bond between the surface of CNT and water molecules to form, rendering the CNT hydrophilic. To turn them hydrophobic, adsorbed oxygen must be removed from the surface of CNT. Here we employ vacuum annealing treatment to induce oxygen desorption process. CNT arrays with extremely low surface concentration of oxygen adsorbates exhibit a superhydrophobic behavior.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The findings presented herein show that the electronic properties of CVD graphene on nickel can be altered from metallic to semiconducting by introducing oxygen adsorbates via UV/ozone or oxygen plasma treatment. These properties can be partially recovered by removing the oxygen adsorbates via vacuum annealing treatment. The effect of oxidation is studied by scanning tunneling microscopy/spectroscopy (STM/STS) and X-ray photoelectron spectroscopy (XPS). As probed by STM/STS, an energy gap opening of 0.11-0.15 eV is obtainable as the oxygen/carbon atomic ratio reaches 13-16%. The corresponding XPS spectra show a significant monotonic increase in the concentration of oxygenated functional groups due to the oxidation treatments. This study demonstrates that the opening of energy gap in CVD graphene can be reasonably controlled by a combination of UV/ozone or oxygen plasma treatment and vacuum annealing treatment. © 2013 Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We used a cyclic reactive ion etching (RIE) process to increase the Co catalyst density on a cobalt disilicide (CoSi2) substrate for carbon nanotube (CNT) growth. Each cycle of catalyst formation consists of a room temperature RIE step and an annealing step at 450 °C. The RIE step transfers the top-surface of CoSi2 into cobalt fluoride; while the annealing reduces the fluoride into metallic Co nanoparticles. We have optimized this cyclic RIE process and determined that the catalyst density can be doubled in three cycles, resulting in a final CNT shell density of 6.6 × 10 11 walls·cm-2. This work demonstrates a very effective approach to increase the CNT density grown directly on silicides. © 2014 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cold-worked austenitic stainless steels have been subject to a pulsed electrochemical treatment in fairly concentrated aqueous solutions of sodium nitrite. The electrochemical reactions that occur transform the strain-induced martensite phase, originally formed by the cold work, back to the austenite phase. However, unlike the conventional thermal annealing process, electrochemically induced surface annealing also hardens the surface of the alloy. Because the process causes transformation of the surface martensite, we term it "electrochemical surface annealing", despite the fact that it results in an increase in surface hardness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A comprehensive study of the stress release and structural changes caused by postdeposition thermal annealing of tetrahedral amorphous carbon (ta-C) on Si has been carried out. Complete stress relief occurs at 600-700°C and is accompanied by minimal structural modifications, as indicated by electron energy loss spectroscopy, Raman spectroscopy, and optical gap measurements. Further annealing in vacuum converts sp3 sites to sp2 with a drastic change occurring after 1100°C. The field emitting behavior is substantially retained up to the complete stress relief, confirming that ta-C is a robust emitting material. © 1999 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Simulated annealing is a popular method for approaching the solution of a global optimization problem. Existing results on its performance apply to discrete combinatorial optimization where the optimization variables can assume only a finite set of possible values. We introduce a new general formulation of simulated annealing which allows one to guarantee finite-time performance in the optimization of functions of continuous variables. The results hold universally for any optimization problem on a bounded domain and establish a connection between simulated annealing and up-to-date theory of convergence of Markov chain Monte Carlo methods on continuous domains. This work is inspired by the concept of finite-time learning with known accuracy and confidence developed in statistical learning theory.