59 resultados para finite difference time domain (FDTD) method


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wireless Sensor Networks (WSNs) which utilise IEEE 802.15.4 technology operate primarily in the 2.4 GHz globally compatible ISM band. However, the wireless propagation channel in this crowded band is notoriously variable and unpredictable, and it has a significant impact on the coverage range and quality of the radio links between the wireless nodes. Therefore, the use of Frequency Diversity (FD) has potential to ameliorate this situation. In this paper, the possible benefits of using FD in a tunnel environment have been quantified by performing accurate propagation measurements using modified and calibrated off-the-shelf 802.15.4 based sensor motes in the disused Aldwych underground railway tunnel. The objective of this investigation is to characterise the performance of FD in this confined environment. Cross correlation coefficients are calculated from samples of the received power on a number of frequency channels gathered during the field measurements. The low measured values of the cross correlation coefficients indicate that applying FD at 2.4 GHz will improve link performance in a WSN deployed in a tunnel. This finding closely matches results obtained by running a computational simulation of the tunnel radio propagation using a 2D Finite-Difference Time-Domain (FDTD) method. ©2009 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wireless Sensor Networks (WSNs) which utilise IEEE 802.15.4 technology offer the potential for low cost deployment and maintenance compared with conventional wired sensor networks, enabling effective and efficient condition monitoring of aged civil engineering infrastructure. We will address wireless propagation for a below to above ground scenario where one of the wireless nodes is located in a below ground fire hydrant chamber to permit monitoring of the local water distribution network. Frequency Diversity (FD) is one method that can be used to combat the damaging effects of multipath fading and so improve the reliability of radio links. However, no quantitative investigation concerning the potential performance gains from the use of FD at 2.4GHz is available for the outlined scenario. In this paper, we try to answer this question by performing accurate propagation measurements using modified and calibrated off-the-shelf 802.15.4 based sensor nodes. These measurement results are also compared with those obtained from simulations that employ our Modified 2D Finite-Difference Time-Domain (FDTD) approach. ©2009 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this we have looked at the concept of introducing carbon nanotubes on the surfaces of the microstrip patch antennas. We examined the performance improvements in a patch antenna through finite difference time domain simulations to increase the efficiency of the antenna. The results suggest that carbon nanotubes lead to a higher gain due to their electrical properties. A high gain antenna with low power requirements resulted in achieving a higher overall bandwidth. The designed antenna's gain, bandwidth and directivity are analyzed before and after introducing carbon nanotubes. © 2013 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper demonstrates how a finite element model which exploits domain decomposition is applied to the analysis of three-phase induction motors. It is shown that a significant gain in cpu time results when compared with standard finite element analysis. Aspects of the application of the method which are particular to induction motors are considered: the means of improving the convergence of the nonlinear finite element equations; the choice of symmetrical sub-domains; the modelling of relative movement; and the inclusion of periodic boundary conditions. © 1999 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper a recently published finite element method, which combines domain decomposition with a novel technique for solving nonlinear magnetostatic finite element problems is described. It is then shown how the method can be extended to, and optimised for, the solution of time-domain problems. © 1999 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In Immersed Boundary Methods (IBM) the effect of complex geometries is introduced through the forces added in the Navier-Stokes solver at the grid points in the vicinity of the immersed boundaries. Most of the methods in the literature have been used with Cartesian grids. Moreover many of the methods developed in the literature do not satisfy some basic conservation properties (the conservation of torque, for instance) on non-uniform meshes. In this paper we will follow the RKPM method originated by Liu et al. [1] to build locally regularized functions that verify a number of integral conditions. These local approximants will be used both for interpolating the velocity field and for spreading the singular force field in the framework of a pressure correction scheme for the incompressible Navier-Stokes equations. We will also demonstrate the robustness and effectiveness of the scheme through various examples. Copyright © 2010 by ASME.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present paper we consider second order compact upwind schemes with a space split time derivative (CABARET) applied to one-dimensional compressible gas flows. As opposed to the conventional approach associated with incorporating adjacent space cells we use information from adjacent time layer to improve the solution accuracy. Taking the first order Roe scheme as the basis we develop a few higher (i.e. second within regions of smooth solutions) order accurate difference schemes. One of them (CABARET3) is formulated in a two-time-layer form, which makes it most simple and robust. Supersonic and subsonic shock-tube tests are used to compare the new schemes with several well-known second-order TVD schemes. In particular, it is shown that CABARET3 is notably more accurate than the standard second-order Roe scheme with MUSCL flux splitting.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report on a high peak power femtosecond modelocked VECSEL and its application as a drive laser for an all semiconductor terahertz time domain spectrometer. The VECSEL produced near-transform-limited 335 fs sech2 pulses at a fundamental repetition rate of 1 GHz, a centre wavelength of 999 nm and an average output power of 120 mW. We report on the effect that this high peak power and short pulse duration has on our generated THz signal.