134 resultados para ferroelectric
Resumo:
The band structure of the Bi layered perovskite SrBi2Ta2O9 (SBT) has been calculated by the tight binding method. We find both the valence and conduction band edges to consist of states primarily derived from the Bi-O layer rather than the perovskite Sr-Ta-O block. The valence band maximum arises from O p and some Bi s states, while the conduction band minimum consists of Bi p states, with a band gap of 5.1 eV. It is argued that the Bi-O layers largely control the electronic response of SBT while the ferroelectric response originates from the perovskite Sr-Ta-O block. Bi and Ta centered traps are calculated to be shallow, which may account in part for the excellent fatigue properties of SBT.
Resumo:
The band structure of the layered perovskite SrBi2Ta2O9 (SBT) was calculated by tight binding and the valence band density of states was measured by x-ray photoemission spectroscopy. We find both the valence and conduction band edges to consist of states primarily derived from the Bi-O layer rather than the perovskite Sr-Ta-O blocks. The valence band maximum arises from O p and some Bi s states, while the conduction band minimum consists of Bi p states, with a wide band gap of 5.1 eV. It is argued that the Bi-O layers largely control the electronic response whereas the ferroelectric response originates mainly from the perovskite Sr-Ta-O block. Bi and Ta centered traps are calculated to be shallow, which may account in part for its excellent fatigue properties. © 1996 American Institute of Physics.
Resumo:
Thickness of the near-interface regions (NIR) and central bulk ohmic resistivity in lead lanthanum zirconate titanate ferroelectric thin films were investigated. A method to separate the low-resistive near-interface regions (NIRs) from the high-resistive central bulk region (CBR) in ferroelectric thin films was presented. Results showed that the thickness of the NIRs depended on the electrode materials in use and the CBR resistivity depended on the impurity doping levels.
Resumo:
Enhanced piezoresponse force microscopy was used to study flux closure vortexlike structures of 90° ferroelastic domains at the nanoscale in thin ferroelectric lead zirconium titanate (PZT) films. Using an external electric field, a vortexlike structure was induced far away from a grain boundary, indicating that physical edges are not necessary for nucleation contrary to previous suggestions. We demonstrate two different configurations of vortexlike structures, one of which has not been observed before. The stability of these structures is found to be size dependent, supporting previous predictions. © 2010 The American Physical Society.