28 resultados para excitation energy level
Resumo:
The dependence of the Raman spectrum on the excitation energy has been investigated for ABA-and ABC- stacked few-layer graphene in order to establish the fingerprint of the stacking order and the number of layers, which affect the transport and optical properties of few-layer graphene. Five different excitation sources with energies of 1.96, 2.33, 2.41, 2.54 and 2.81â €...eV were used. The position and the line shape of the Raman 2D, G*, N, M, and other combination modes show dependence on the excitation energy as well as the stacking order and the thickness. One can unambiguously determine the stacking order and the thickness by comparing the 2D band spectra measured with 2 different excitation energies or by carefully comparing weaker combination Raman modes such as N, M, or LOLA modes. The criteria for unambiguous determination of the stacking order and the number of layers up to 5 layers are established.
Resumo:
Measurements consisting of γ-ray excitation functions and angular distributions were performed using the (n,n′γ) reaction on Ni62. The excitation function data allowed us to check the consistency of the placement of transitions in the level scheme. From γ-ray angular distributions, the lifetimes of levels up to ~3.8 MeV in excitation energy were extracted with the Doppler-shift attenuation method. The experimentally deduced values of reduced transition probabilities were compared with the predictions of the quadrupole vibrator model and with large-scale shell model calculations in the fp shell configuration space. Two-phonon states were found to exist with some notable deviation from the predictions of the quadrupole vibrator model, but no evidence for the existence of three-phonon states could be established. Z=28 proton core excitations played a major role in understanding the observed structure. © 2011 American Physical Society.
Resumo:
We measure the effects of phonon confinement on the Raman spectra of silicon nanowires (SiNWs). We show how previous reports of phonon confinement in SiNWs and nanostructures are actually inconsistent with phonon confinement, but are due to the intense local heating caused by the laser power used for Raman measurements. This is peculiar to nanostructures, and would require orders of magnitude higher power in bulk Si. By varying the temperature, power and excitation energy, we identify the contributions of pure confinement, heating and carrier photo-excitation. After eliminating laser-related effects, the Raman spectra show confinement signatures typical of quantum wires. © 2003 Elsevier B.V. All rights reserved.
Resumo:
Resonant tunnelling spectroscopy is used to investigate the energy level spectrum of a wide potential well in the presence of a large magnetic field oriented at angles θ between 0° and 90° to the normal to the plane of the well. In the tilted field geometry, the current-voltage characteristics exhibit a large number of quasiperiodic resonant peaks even though the classical motion of electrons in the potential well is chaotic. The voltage range and spacing of the resonances both change dramatically with θ. We give a quantitative explanation for this behaviour by considering the classical period of unstable periodic orbits within the chaotic sea of the potential well.
Resumo:
We determine the Raman scattering efficiency of the G and 2D peaks in graphene. Three substrates are used: silicon covered with 300 or 90 nm oxide, and calcium fluoride (CaF2). On Si/SiOx, the areas of the G and 2D peak show a strong dependence on the substrate due to interference effects, while on CaF2 no significant dependence is detected. Unintentional doping is reduced by placing graphene on CaF2. We determine the Raman scattering efficiency by comparison with the 322 cm -1 peak area of CaF2. At 2.41 eV, the Raman efficiency of the G peak is ∼200×10-5 m-1Sr-1, and changes with the excitation energy to the power of 4. The 2D Raman efficiency is at least one order of magnitude higher than that of the G peak, with a different excitation energy dependence. © 2013 American Physical Society.
Resumo:
The ultrafast charge carrier dynamics in GaAs/conjugated polymer type II heterojunctions are investigated using time-resolved photoluminescence spectroscopy at 10 K. By probing the photoluminescence at the band edge of GaAs, we observe strong carrier lifetime enhancement for nanowires blended with semiconducting polymers. The enhancement is found to depend crucially on the ionization potential of the polymers with respect to the Fermi energy level at the surface of the GaAs nanowires. We attribute these effects to electron doping by the polymer which reduces the unsaturated surface-state density in GaAs. We find that when the surface of nanowires is terminated by native oxide, the electron injection across the interface is greatly reduced and such surface doping is absent. Our results suggest that surface engineering via π-conjugated polymers can substantially improve the carrier lifetime in nanowire hybrid heterojunctions with applications in photovoltaics and nanoscale photodetectors.
Resumo:
As an important step in understanding trap-related mechanisms in AlGaN/GaN transistors, the physical properties of surface states have been analyzed through the study of the transfer characteristics of a MISFET. This letter focused initially on the relationship between donor parameters (concentration and energy level) and electron density in the channel in AlGaN/GaN heterostructures. This analysis was then correlated to dc and pulsed measurements of the transfer characteristics of a MISFET, where the gate bias was found to modulate either the channel density or the donor states. Traps-free and traps-frozen TCAD simulations were performed on an equivalent device to capture the donor behavior. A donor concentration of 1.14× 1013 ∼ cm-2 with an energy level located 0.2 eV below the conduction band edge gave the best fit to measurements. With the approach described here, we were able to analyze the region of the MISFET that corresponds to the drift region of a conventional HEMT. © 1980-2012 IEEE.
Resumo:
The polarization dependence of the double resonant Raman scattering (2D) band in bilayer graphene (BLG) is studied as a function of the excitation laser energy. It has been known that the complex shape of the 2D band of BLG can be decomposed into four Lorentzian peaks with different Raman frequency shifts attributable to four individual scattering paths in the energy-momentum space. From our polarization dependence study, however, we reveal that each of the four different peaks is actually doubly degenerate in its scattering channels, i.e., two different scattering paths with similar Raman frequency shifts for each peak. We find theoretically that one of these two paths, ignored for a long time, has a small contribution to their scattering intensities but are critical in understanding their polarization dependences. Because of this, the maximum-to-minimum intensity ratios of the four peaks show a strong dependence on the excitation energy, unlike the case of single-layer graphene (SLG). Our findings thus reveal another interesting aspect of electron-phonon interactions in graphitic systems. © 2014 Elsevier Ltd. All rights reserved.
Resumo:
This paper is concerned with the ensemble statistics of the response to harmonic excitation of a single dynamic system such as a plate or an acoustic volume. Random point process theory is employed, and various statistical assumptions regarding the system natural frequencies are compared, namely: (i) Poisson natural frequency spacings, (ii) statistically independent Rayleigh natural frequency spacings, and (iii) natural frequency spacings conforming to the Gaussian orthogonal ensemble (GOE). The GOE is found to be the most realistic assumption, and simple formulae are derived for the variance of the energy of the system under either point loading or rain-on-the-roof excitation. The theoretical results are compared favourably with numerical simulations and experimental data for the case of a mass loaded plate. © 2003 Elsevier Ltd. All rights reserved.
Resumo:
The plastic collapse response of aluminium egg-box panels subjected to out-of-plane compression has been measured and modelled. It is observed that the collapse strength and energy absorption are sensitive to the level of in-plane constraint, with collapse dictated either by plastic buckling or by a travelling plastic knuckle mechanism. Drop weight tests have been performed at speeds of up to 6 m s-1, and an elevation in strength with impact velocity is noted. A 3D finite element shell model is needed in order to reproduce the observed behaviours. Additional calculations using an axisymmetric finite element model give the correct collapse modes but are less accurate than the more sophisticated 3D model. The finite element simulations suggest that the observed velocity dependence of strength is primarily due to strain-rate sensitivity of the aluminium sheet, with material inertia playing a negligible role. Finally, it is shown that the energy absorption capacity of the egg-box material is comparable to that of metallic foams. © 2003 Elsevier Ltd. All rights reserved.
Resumo:
Non-hydrogenated tetrahedral amorphous carbon (ta-C) has shown superior field emission characteristics. The understanding of the emission mechanism has been hindered by the lack of any directly measured data on the band offsets between ta-C and Si. In this paper results from direct in situ X-ray photoemission spectroscopy (XPS) measurements of the band-offset between ta-C and Si are reported. The measurements were carried out using a filtered cathodic vacuum arc (FCVA) deposition system attached directly to an ultra-high vacuum (UHV) XPS chamber via a load lock chamber. Repeated XPS measurements were carried out after monolayer depositions on in situ cleaned Si substrates. The total film thickness for each set of measurements was approximately 5 nm. Analysis of the data from undoped ta-C on n and p Si show the unexpected result that the conduction band barrier between Si and ta-C remains around 1.0 eV, but that the valence band barrier changes from 0.7 to 0.0 eV. The band line up derived from these barriers suggests that the Fermi level in the ta-C lies 0.3 eV above the valence band on both p and n+Si. The heterojunction barriers when ta-C is doped with nitrogen are also presented. The implications of the heterojunction energy barrier heights for field emission from ta-C are discussed.
Resumo:
This paper investigates the variation of the integrated density of states with conduction activation energy in hydrogenated amorphous silicon thin film transistors. Results are given for two different gate insulator layers, PECVD silicon oxide and thermally grown silicon dioxide. The different gate insulators produce transistors with very different initial transfer characteristics, but the variation of integrated density of states with conduction activation energy is shown to be similar.