54 resultados para electrochemical doping
Resumo:
The effect of KI encapsulation in narrow (HiPCO) single-walled carbon nanotubes is studied via Raman spectroscopy and optical absorption. The analysis of the data explores the interplay between strain and structural modifications, bond-length changes, charge transfer, and electronic density of states. KI encapsulation appears to be consistent with both charge transfer and strain that shrink both the C-C bonds and the overall nanotube along the axial direction. The charge transfer in larger semiconducting nanotubes is low and comparable with some cases of electrochemical doping, while optical transitions between pairs of singularities of the density of states are quenched for narrow metallic nanotubes. Stronger changes in the density of states occur in some energy ranges and are attributed to polarization van der Waals interactions caused by the ionic encapsulate. Unlike doping with other species, such as atoms and small molecules, encapsulation of inorganic compounds via the molten-phase route provides stable effects due to maximal occupation of the nanotube inner space.
Resumo:
Polyaniline (PANI) nanobrushes were synthesized by template-free electrochemical galvanostatic methods. When the same method was applied to the carbon nanohorn (CNH) solution containing aniline monomers, a hybrid nanostructure containing PANI and CNHs was enabled after electropolymerization. This is the first report on the template-free method to make PANI nanobrushes and homogeneous hybrid soft matter (PANI) with carbon nanoparticles. Raman spectroscopy was used to analyze the interaction between CNH and PANI. Electrochemical nanofabrication offers simplicity and good control when used to make electronic devices. Both of these materials were applied in supercapacitors and an improvement capacitive current by using the hybrid material was observed.
Resumo:
Doping in hydrogenated amorphous silicon occurs by a process of an ionised donor atom partially compensated by a charged dangling bond. The total energies of various dopant and dopant/bonding combinations are calculated for tetrahedral amorphous carbon. It is found that charged dangling bonds are less favoured because of the stronger Coulombic repulsion in ta-C. Instead the dopants can be compensated by weak bond states in the lower gap associated with odd-membered π-rings or odd-numbered π-chains. The effect is that the doping efficiency is low but there are not charged midgap recombination centres, to reduce photoconductivity or photoluminescence with doping, as occurs in a-Si:H.
Resumo:
Doping in hydrogenated amorphous silicon occurs by a process of an ionized donor atom partially compensated by a charged dangling bond. The total energies of various dopant and dopant/bonding combinations are calculated for tetrahedral amorphous carbon. It is found that charged dangling bonds are less favored because of the stronger Coulombic repulsion in ta-C. Instead the dopants can be compensated by weak bond states in the lower gap associated with odd-membered π-rings or odd-numbered π-chains. The effect is that the doping efficiency is low but there are not charged midgap recombination centres, to reduce photoconductivity or photoluminescence with doping, as occurs in a-Si:H.
Resumo:
Cold-worked austenitic stainless steels have been subject to a pulsed electrochemical treatment in fairly concentrated aqueous solutions of sodium nitrite. The electrochemical reactions that occur transform the strain-induced martensite phase, originally formed by the cold work, back to the austenite phase. However, unlike the conventional thermal annealing process, electrochemically induced surface annealing also hardens the surface of the alloy. Because the process causes transformation of the surface martensite, we term it "electrochemical surface annealing", despite the fact that it results in an increase in surface hardness.