54 resultados para death-metal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Growth of Salmonella enterica in mammalian tissues results from continuous spread of bacteria to new host cells. Our previous work indicated that infective S. enterica are liberated from host cells via stochastic necrotic burst independently of intracellular bacterial numbers. Here we report that liver phagocytes can undergo apoptotic caspase-3-mediated cell death in vivo, with apoptosis being a rare event, more prevalent in heavily infected cells. The density-dependent apoptotic cell death is likely to constitute an alternative mechanism of bacterial spread as part of a bet-hedging strategy, ensuring an ongoing protective intracellular environment in which some bacteria can grow and persist.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Salmonella enterica sv. typhimurium (S. enterica sv. Typhimurium) has two metal-transporting P(1)-type ATPases whose actions largely overlap with respect to growth in elevated copper. Mutants lacking both ATPases over-accumulate copper relative to wild-type or either single mutant. Such duplication of ATPases is unusual in bacterial copper tolerance. Both ATPases are under the control of MerR family metal-responsive transcriptional activators. Analyses of periplasmic copper complexes identified copper-CueP as one of the predominant metal pools. Expression of cueP was recently shown to be controlled by the same metal-responsive activator as one of the P(1)-type ATPase genes (copA), and copper-CueP is a further atypical feature of copper homeostasis in S. enterica sv. Typhimurium. Elevated copper is detected by a reporter construct driven by the promoter of copA in wild-type S. enterica sv. Typhimurium during infection of macrophages. Double mutants missing both ATPases also show reduced survival inside cultured macrophages. It is hypothesized that elevated copper within macrophages may have selected for specialized copper-resistance systems in pathogenic microorganism such as S. enterica sv. Typhimurium.