24 resultados para carbon supported PtSn catalysts


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report the growth of vertically-aligned nanotube forests, of up to 0.2 mm in height, on an 85:15 sp2:sp3 carbon support with Fe catalyst. This is achieved by purely-thermal chemical vapour deposition with the catalyst pretreated in inert environments. Pretreating the catalyst in a reducing atmosphere causes catalyst diffusion into the support and the growth of defective tubes. Other sp2:sp3 compositions, including graphite, tetrahedral amorphous carbon, and pure diamond, also lead to the growth of defective carbon morphologies. These results pave the way towards controlled growth of forests on carbon fibres. It could give rise to applications in enhanced fuel cell electrodes and better hierarchical carbon fibre-nanotube composites. © 2014 Elsevier Ltd. All rights reserved.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

We systematically study the growth of carbon nanotube forests by chemical vapor deposition using evaporated monometallic or bimetallic Ni, Co, or Fe films supported on alumina. Our results show two regimes of catalytic activity. When the total thickness of catalyst is larger than nominally 1nm, bimetallic catalysts tend to outperform the equivalent layers of a single metal, yielding taller forests of multi-walled carbon nanotubes (CNTs). In contrast, for layers thinner than ~1nm, bimetallic catalysts are notably less active than individually. However, the amount of small diameter and single-walled CNTs is significantly increased. This possible transition at ~1nm might be related to different catalyst composition after annealing, depending whether or not the films overlap during evaporation and alloy during catalyst formation. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Our group recently reproduced the water-assisted growth method, so-called "SuperGrowth", of millimeter-thick single-walled carbon nanotube (SWNT) forests by using C2H4/H2/H2O/Ar reactant gas and Fe/Al2O3, catalyst. In this current work, a parametric study was carried out on both reaction and catalyst conditions. Results revealed that a thin Fe catalyst layer (about 0.5 nm) yielded rapid growth of SWNTs only when supported on Al2O3, and that Al2O3 support enhanced the activity of Fe, Co, and Ni catalysts. The growth window for the rapid SWNT growth was narrow, however. Optimum amount of added H2O increased the SWNT growth rate but further addition of H2O degraded both the SWNT growth rate and quality. Addition of H2 was also essential for rapid SWNT growth, but again, further addition decreased both the SWNT growth rate and quality. Because Al2O3 catalyzes hydrocarbon reforming, Al2O3 support possibly enhances the SWNT growth rate by supplying the carbon source to the catalyst nanoparticles. The origin of the narrow window for rapid SWNT growth is also discussed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We have grown carbon nanotubes using Fe and Ni catalyst films deposited by atomic layer deposition. Both metals lead to catalytically active nanoparticles for growing vertically aligned nanotube forests or carbon fibres, depending on the growth conditions and whether the substrate is alumina or silica. The resulting nanotubes have narrow diameter and wall number distributions that are as narrow as those grown from sputtered catalysts. The state of the catalyst is studied by in-situ and ex-situ X-ray photoemission spectroscopy. We demonstrate multi-directional nanotube growth on a porous alumina foam coated with Fe prepared by atomic layer deposition. This deposition technique can be useful for nanotube applications in microelectronics, filter technology, and energy storage. © 2014 AIP Publishing LLC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report a detailed study of surface-bound chemical vapor deposition of carbon nanotubes and nanofibers from evaporated transition metal catalysts exposed to ammonia diluted acetylene. We show that a reduction of the Fe/Co catalyst film thickness below 3 nm results into a transition from large diameter (> 40 nm), bamboo-like nanofibers to small diameter (similar to 5 nm) multi-walled carbon nanotubes. The nanostructuring of ultrathin catalyst films critically depends on the gas atmosphere, with the resulting island distribution initiating the carbon nucleation. Compared to purely thermal chemical vapor deposition, we find that, for small diameter nanotube growth, DC plasma assistance is detrimental to graphitization and sample homogeneity and cannot prevent an early catalyst poisoning. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper reviews work on low temperature growth of carbon nanotubes, on Si, on plastic, on carbon cloth, using sputtered and colloidal catalysts, and with nano-imprinted patterning. © 2005 Materials Research Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present the fabrication and high frequency characterization of a capacitive nanoelectromechanical system (NEMS) switch using a dense array of horizontally aligned single-wall carbon nanotubes (CNTs). The nanotubes are directly grown onto metal layers with prepatterned catalysts with horizontal alignment in the gas flow direction. Subsequent wetting-induced compaction by isopropanol increases the nanotube density by one order of magnitude. The actuation voltage of 6 V is low for a NEMS device, and corresponds to CNT arrays with an equivalent Young's modulus of 4.5-8.5 GPa, and resistivity of under 0.0077 Ω·cm. The high frequency characterization shows an isolation of -10 dB at 5 GHz. © 2010 American Institute of Physics.