19 resultados para analytical approach


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ground vibration due to underground railways is a significant source of disturbance for people living or working near the subways. The numerical models used to predict vibration levels have inherent uncertainty which must be understood to give confidence in the predictions. A semi-analytical approach is developed herein to investigate the effect of soil layering on the surface vibration of a halfspace where both soil properties and layer inclination angles are varied. The study suggests that both material properties and inclination angle of the layers have significant effect ( ± 10dB) on the surface vibration response. © 2009 IOP Publishing Ltd.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper presents an analytical model for the determination of the basic breakdown properties of three-dimensional (3D)-RESURF/CoolMOS/super junction type structures. To account for the two-dimensional (2D) effect of the 3D-RESURF action, 2D models of the electric field distribution are developed. Based on these, expressions are derived for the breakdown voltage as a function of doping concentration and physical dimensions. In addition to cases where the drift regions are fully depleted, the model developed is also applicable to situations involving drift regions which are almost depleted. Accuracy of the analytical approach is verified by comparison with numerical results obtained from the MEDICI device simulator.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The heat dissipation capability of highly porous cellular metal foams with open cells subject to forced air convection is studied using a combined experimental and analytical approach. The cellular morphologies of six FeCrAlY (an iron-based alloy) foams and six copper alloy foams with a range of pore sizes and porosities are quantified with the scanning electronic microscope and image analysis. Experimental measurements on pressure drop and heat transfer for copper foams are carried out. A numerical model for forced convection across open-celled metal foams is subsequently developed, and the predictions are compared with those measured. Reasonably good agreement with test data is obtained, given the complexity of the cellular foam morphology and the associated momentum/energy transport. The results show that cell size has a more significant effect on the overall heat transfer than porosity. An optimal porosity is obtained based on the balance between pressure drop and overall heat transfer, which decreases as the Reynolds number is increased.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper proposes an analytical approach that is generalized for the design of various types of electric machines based on a physical magnetic circuit model. Conventional approaches have been used to predict the behavior of electric machines but have limitations in accurate flux saturation analysis and hence machine dimensioning at the initial design stage. In particular, magnetic saturation is generally ignored or compensated by correction factors in simplified models since it is difficult to determine the flux in each stator tooth for machines with any slot-pole combinations. In this paper, the flux produced by stator winding currents can be calculated accurately and rapidly for each stator tooth using the developed model, taking saturation into account. This aids machine dimensioning without the need for a computationally expensive finite element analysis (FEA). A 48-slot machine operated in induction and doubly-fed modes is used to demonstrate the proposed model. FEA is employed for verification.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Self-assembly processes resulting in linear structures are often observed in molecular biology, and include the formation of functional filaments such as actin and tubulin, as well as generally dysfunctional ones such as amyloid aggregates. Although the basic kinetic equations describing these phenomena are well-established, it has proved to be challenging, due to their non-linear nature, to derive solutions to these equations except for special cases. The availability of general analytical solutions provides a route for determining the rates of molecular level processes from the analysis of macroscopic experimental measurements of the growth kinetics, in addition to the phenomenological parameters, such as lag times and maximal growth rates that are already obtainable from standard fitting procedures. We describe here an analytical approach based on fixed-point analysis, which provides self-consistent solutions for the growth of filamentous structures that can, in addition to elongation, undergo internal fracturing and monomer-dependent nucleation as mechanisms for generating new free ends acting as growth sites. Our results generalise the analytical expression for sigmoidal growth kinetics from the Oosawa theory for nucleated polymerisation to the case of fragmenting filaments. We determine the corresponding growth laws in closed form and derive from first principles a number of relationships which have been empirically established for the kinetics of the self-assembly of amyloid fibrils.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ground vibration due to underground railways is a significant source of disturbance for people living or working near subways. Numerical models are commonly used to predict vibration levels; however, uncertainty inherent to these simulations must be understood to give confidence in the predictions. A semi-analytical approach is developed herein to investigate the effect of uncertainty in soil material properties on the surface vibration of layered halfspaces excited by an underground railway. The half-space is simulated using the thin-layer method coupled with the pipe-in-pipe (PiP) method for determining the load on the buried tunnel. The K-L expansion method is employed to smoothly vary the material properties throughout the soil by up to 10%. The simulation predicts a surface rms velocity variation of 5-10dB compared to a homogeneous, layered halfspace. These results suggest it may be prudent to include a 5dB error band on predicted vibration levels when simulating areas of varied material properties.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The fundamental contact mechanics principles underlying nanoindentation testing techniques are reviewed. A range of material constitutive responses are covered, including elastic, plastic, and viscous deformation, and incorporating indentation of linearly viscoelastic materials and poroelastic materials. Emphasis is on routine analysis of experimental nanoindentation data, including deconvolution techniques for material properties measurements during indentation. In most cases, an analytical approach for an isotropic half-space is considered. Special cases are briefly described, including anisotropic materials, inhomogeneous composite materials and layered filmsubstrate systems. © 2011 by Pan Stanford Publishing Pte. Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We develop a new formulation for the form-finding of tensegrity structures in which the primary variables are the Cartesian components of element lengths. Both an analytical and a numerical implementation of the formulation are described; each require a description of the connectivity of the tensegrity, with the iterative numerical method also requiring a random starting vector of member force densities. The analytical and numerical form-finding of tensegrity structures is demonstrated through six examples, and the results obtained are compared and contrasted with those available in the literature to verify the accuracy and viability of the suggested methods. © 2013 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A method for modelling and predicting the noise generated by the interaction between the unsteady wake shed from the rotor and a downstream row of stators in a modern ultra-high bypass ducted turbofan engine is described. An analytically-based model is developed to account for three main features of the problem. First, the way in which a typical unsteady wake disturbance from the rotor interacts and is distorted by the mean swirling flow as it propagates downstream. The analysis allows for the inclusion of mean entropy gradients and entropy perturbations. Second, the effects of real stator-blade geometry and proper representation of the genuinely three-dimensional nature of the problem. Third, to model the propagation of the resulting noise back upstream in mean swirling flow. The analytical nature of the problem allows for the inclusion of all wake harmonics and enables the response at all blade passing frequencies to be determined. Example results are presented for an initial wake distribution corresponding to a genuine rotor configuration. Comparisons between numerical data and the asymptotic model for the wake evolution are made. Copyright © 2004 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study employs an analytical model to describe the rocking response of a masonry arch to in-plane seismic loading. Through evaluation of the rate of energy input to the system, the model reveals the ground motions that cause maximum rocking amplification. An experimental investigation of small-scale masonry arches subjected to past earthquake time histories is used to evaluate the analytical model and to explore arch rocking behaviour. The results demonstrate that rocking amplification can occur, but is highly sensitive to slight variations in the ground motion. Thus, the accuracy to which the arch response can be predicted is brought into perspective. The concept that the primary impulse of an expected ground motion is fundamentally important in predicting arch collapse is evaluated in light of the developed energy approach. Finally, a statistical method is proposed for predicting the probability of arch collapse during seismic loading.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper proposes a method for extracting reliable architectural characteristics from complex porous structures using micro-computed tomography (μCT) images. The work focuses on a highly porous material composed of a network of fibres bonded together. The segmentation process, allowing separation of the fibres from the remainder of the image, is the most critical step in constructing an accurate representation of the network architecture. Segmentation methods, based on local and global thresholding, were investigated and evaluated by a quantitative comparison of the architectural parameters they yielded, such as the fibre orientation and segment length (sections between joints) distributions and the number of inter-fibre crossings. To improve segmentation accuracy, a deconvolution algorithm was proposed to restore the original images. The efficacy of the proposed method was verified by comparing μCT network architectural characteristics with those obtained using high resolution CT scans (nanoCT). The results indicate that this approach resolves the architecture of these complex networks and produces results approaching the quality of nanoCT scans. The extracted architectural parameters were used in conjunction with an affine analytical model to predict the axial and transverse stiffnesses of the fibre network. Transverse stiffness predictions were compared with experimentally measured values obtained by vibration testing. © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.