25 resultados para WAG-CO2. Recuperação. Óleo leve. Modelagem de reservatório. Simulação.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The measurement of high speed laser beam parameters during processing is a topic that has seen growing attention over the last few years as quality assurance places greater demand on the monitoring of the manufacturing process. The targets for any monitoring system is to be non-intrusive, low cost, simple to operate, high speed and capable of operation in process. A new ISO compliant system is presented based on the integration of an imaging plate and camera located behind a proprietary mirror sampling device. The general layout of the device is presented along with the thermal and optical performance of the sampling optic. Diagnostic performance of the system is compared with industry standard devices, demonstrating the high quality high speed data which has been generated using this system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The inability of emissions reduction methods to meet upcoming legislation without an unacceptable increase in vehicle cost is a major problem of automobile manufacturer. This work aims to develop a cost-effective reduction of automobile emissions. A prototype CO2 sensor with 5 msec response time was built and bench tested, then used on an engine. The sensor design was based on standard emissions measurement technology using non-dispersive IR absorption. An improved sensor has now been completed with significant improvements in terms of signal to noise ratio and long-term stability. The improved sensor will be used to measure CO2 concentrations on three different engines. The results will then be used to validate engine and catalyst models and to propose control strategies aimed at reducing overall emissions. A brief description of the sensor itself was presented. Original is an abstract.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Targets to cut 2050 CO2 emissions in the steel and aluminium sectors by 50%, whilst demand is expected to double, cannot be met by energy efficiency measures alone, so options that reduce total demand for liquid metal production must also be considered. Such reductions could occur through reduced demand for final goods (for instance by life extension), reduced demand for material use in each product (for instance by lightweight design) or reduced demand for material to make existing products. The last option, improving the yield of manufacturing processes from liquid metal to final product, is attractive in being invisible to the final customer, but has had little attention to date. Accordingly this paper aims to provide an estimate of the potential to make existing products with less liquid metal production. Yield ratios have been measured for five case study products, through a series of detailed factory visits, along each supply chain. The results of these studies, presented on graphs of cumulative energy against yield, demonstrate how the embodied energy in final products may be up to 15 times greater than the energy required to make liquid metal, due to yield losses. A top-down evaluation of the global flows of steel and aluminium showed that 26% of liquid steel and 41% of liquid aluminium produced does not make it into final products, but is diverted as process scrap and recycled. Reducing scrap substitutes production by recycling and could reduce total energy use by 17% and 6% and total CO 2 emissions by 16% and 7% for the steel and aluminium industries respectively, using forming and fabrication energy values from the case studies. The abatement potential of process scrap elimination is similar in magnitude to worldwide implementation of best available standards of energy efficiency and demonstrates how decreasing the recycled content may sometimes result in emission reductions. Evidence from the case studies suggests that whilst most companies are aware of their own yield ratios, few, if any, are fully aware of cumulative losses along their whole supply chain. Addressing yield losses requires this awareness to motivate collaborative approaches to improvement. © 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study examines the kinetics of carbonation by CO2 at temperatures of ca. 750 °C of a synthetic sorbent composed of 15 wt% mayenite (Ca12Al14O33) and CaO, designated HA-85-850, and draws comparisons with the carbonation of a calcined limestone. In-situ XRD has verified the inertness of mayenite, which neither interacts with the active CaO nor does it significantly alter the CaO carbonation–calcination equilibrium. An overlapping grain model was developed to predict the rate and extent of carbonation of HA-85-850 and limestone. In the model, the initial microstructure of the sorbent was defined by a discretised grain size distribution, assuming spherical grains. The initial input to the model – the size distribution of grains – was a fitted parameter, which was in good agreement with measurements made with mercury porosimetry and by the analysis of SEM images of sectioned particles. It was found that the randomly overlapping spherical grain assumption offered great simplicity to the model, despite its approximation to the actual porous structure within a particle. The model was able to predict the performance of the materials well and, particularly, was able to account for changes in rate and extent of reaction as the structure evolved after various numbers of cycles of calcination and carbonation.