31 resultados para Voltage performance indices


Relevância:

80.00% 80.00%

Publicador:

Resumo:

A novel materials-selection procedure has been developed and implemented in software. The procedure makes use of Materials Selection Charts: a new way of displaying material property data; and performance indices: combinations of material properties which govern performance. Optimization methods are employed for simultaneous selection of both material and shape.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Reducing energy consumption is a major challenge for "energy-intensive" industries such as papermaking. A commercially viable energy saving solution is to employ data-based optimization techniques to obtain a set of "optimized" operational settings that satisfy certain performance indices. The difficulties of this are: 1) the problems of this type are inherently multicriteria in the sense that improving one performance index might result in compromising the other important measures; 2) practical systems often exhibit unknown complex dynamics and several interconnections which make the modeling task difficult; and 3) as the models are acquired from the existing historical data, they are valid only locally and extrapolations incorporate risk of increasing process variability. To overcome these difficulties, this paper presents a new decision support system for robust multiobjective optimization of interconnected processes. The plant is first divided into serially connected units to model the process, product quality, energy consumption, and corresponding uncertainty measures. Then multiobjective gradient descent algorithm is used to solve the problem in line with user's preference information. Finally, the optimization results are visualized for analysis and decision making. In practice, if further iterations of the optimization algorithm are considered, validity of the local models must be checked prior to proceeding to further iterations. The method is implemented by a MATLAB-based interactive tool DataExplorer supporting a range of data analysis, modeling, and multiobjective optimization techniques. The proposed approach was tested in two U.K.-based commercial paper mills where the aim was reducing steam consumption and increasing productivity while maintaining the product quality by optimization of vacuum pressures in forming and press sections. The experimental results demonstrate the effectiveness of the method.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Reducing energy consumption is a major challenge for energy-intensive industries such as papermaking. A commercially viable energy saving solution is to employ data-based optimization techniques to obtain a set of optimized operational settings that satisfy certain performance indices. The difficulties of this are: 1) the problems of this type are inherently multicriteria in the sense that improving one performance index might result in compromising the other important measures; 2) practical systems often exhibit unknown complex dynamics and several interconnections which make the modeling task difficult; and 3) as the models are acquired from the existing historical data, they are valid only locally and extrapolations incorporate risk of increasing process variability. To overcome these difficulties, this paper presents a new decision support system for robust multiobjective optimization of interconnected processes. The plant is first divided into serially connected units to model the process, product quality, energy consumption, and corresponding uncertainty measures. Then multiobjective gradient descent algorithm is used to solve the problem in line with user's preference information. Finally, the optimization results are visualized for analysis and decision making. In practice, if further iterations of the optimization algorithm are considered, validity of the local models must be checked prior to proceeding to further iterations. The method is implemented by a MATLAB-based interactive tool DataExplorer supporting a range of data analysis, modeling, and multiobjective optimization techniques. The proposed approach was tested in two U.K.-based commercial paper mills where the aim was reducing steam consumption and increasing productivity while maintaining the product quality by optimization of vacuum pressures in forming and press sections. The experimental results demonstrate the effectiveness of the method. © 2006 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Static and dynamic behavior of the epitaxially grown dual gate trench 4H-SiC junction field effect transistor (JFET) is investigated. Typical on-state resistance Ron was 6-10mΩcm2 at VGS = 2.5V and the breakdown voltage between the range of 1.5-1.8kV was realized at VGS = -5V for normally-off like JFETs. It was found that the turn-on energy delivers the biggest part of the switching losses. The dependence of switching losses from gate resistor is nearly linear, suggesting that changing the gate resistor, a way similar to Si-IGBT technology, can easily control di/dt and dv/dt. Turn-on losses at 200°C are lower compared to those at 25°C, which indicates the influence of the high internal p-type gate layer resistance. Inductive switching numerical analysis suggested the strong influence of channel doping conditions on the turn-on switching performance. The fast switching normally-off JFET devices require heavily doped narrow JFET channel design. © (2009) Trans Tech Publications, Switzerland.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work describes the deposition and characterisation of semi-insulating oxygen-doped silicon films for the development of high voltage polycrystalline silicon (poly-Si) circuitry on glass. The performance of a novel poly-Si High Voltage Thin Film Transistor (HVTFT) structure, incorporating a layer of semi-insulating material, has been investigated using a two dimensional device simulator. The semi-insulating layer increases the operating voltage of the HVTFT structure by linearising the potential distribution in the device offset region. A glass compatible semi-insulating layer, suitable for HVTFT applications, has been deposited by the Plasma Enhanced Chemical Vapour Deposition (PECVD) technique from silane (SiH4), nitrous oxide (N2O) and helium (He) gas mixtures. The as-deposited films are furnace annealed at 600°C which is the maximum process temperature. By varying the N2O/SiH4 ratio the conductivity of the annealed films can be accurately controlled up to a maximum of around 10-7 Ω-1cm-1. Helium dilution of the reactant gases improves both film uniformity and reproducibility. Raman analysis shows the as-deposited and annealed films to be completely amorphous. A model for the microstructure of these Semi-Insulating Amorphous Oxygen-Doped Silicon (SIAOS) films is proposed to explain the observed physical and electrical properties.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Diamond-like carbon (DLC) coatings were deposited on to silicon, glass and metal substrates, using an rf-plasma enhanced chemical vapour deposition (rf-PECVD) process. The resultant film properties were evaluated in respect of material and interfacial property control, based on bias voltage variation and the introduction of inert (He and Ar) and reactive (N2) diluting gases in a CH4 plasma. The analysis techniques used to assess the material properties of the films included AFM, EELS, RBS/ERDA, spectroscopic, electrical, stress, microhardness, and adhesion. These were correlated to the tribological performance of the coatings using wear measurements. The most important observation is that He dilution (>90%) promotes enhanced adhesion with respect to all substrate material studies. Coatings typically exhibit a microhardness of the order of 10-20 GPa in films 0.1voltage variation and the introduction of inert (He and Ar) and reactive (N2) diluting gases in a CH4 plasma. The analysis techniques used to assess the material properties of the films included AFM, EELS, RBS/ERDA, spectroscopic, electrical, stress, microhardness, and adhesion. These were correlated to the tribological performance of the coatings using wear measurements. The most important observation is that He dilution (>90%) promotes enhanced adhesion with respect to all substrate materials studied. Coatings typically exhibit a microhardness of the order of 10-20 GPa in films 0.1 < d < 2 μm thick, with associated electrical resistivity in the range 108 < ρ < 1012 Ω·cm, coefficient of friction <0.1 and surface RMS roughness as low as 2 A. The results are discussed with respect to surface pre-treatment, ion surface bombardment, interfacial reactivity and changes in plasma gas breakdown processes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The promising theoretical properties of diamond, together with the recent advances in producing high-quality single crystal diamond substrates, have increased the interest in using diamond in power electronic devices. This paper presents numerical and experimental off-state results for a diamond Schottky barrier diode (SBD), one of most studied unipolar devices in diamond. Finding a suitable termination structure is an essential step towards designing a high voltage diamond device. The ramp oxide structure shows very encouraging electronic performance when used to terminate diamond SBDs. High-k dielectrics are also considered in order to further improve the reliability and electrical performance of the structure. © 2007 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Novel alternatives to the conventional single crystal diamond Schottky metal-intrinsic-p+ (m-i-p+) diode is presented in this work. The conduction mechanism of the device is analysed and structural modifications to enhance its performance are proposed. The periodic inclusion of highly p+ doped thin δ-layers and p+ spots in the intrinsic voltage blocking layer of the diode drastically improves the forward performance of these devices enhancing the forward current of the device by a factor of 10 - 17 with a maximum forward current density of ̃ 40 A/cm 2 for a 2 kV device.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents for the first time an investigation and comparison of the superjunction IGBT (SJBT) as proposed in [1,2] and the current state of art Field Stop IGBT [3,4]. Simulation results indicate the superior performance of the superjunction IGBT under switching conditions. For the same conditions, at a collector current density of 100A/cm2 and on-state voltage 1.6 V the switching off losses for a SJBT and Field-Stop IGBT are 1 and 4.5 mJ/cm 2 respectively. © 2006 IEEE.