106 resultados para Viscosity Solutions
Resumo:
Satellite droplets are unwanted in inkjet printing and various approaches have been suggested for their reduction. Low jetting speeds limit applications of the process. Added surfactants for wetting and conductivity enhancement may help but dynamic surface tension effects may counteract improvements. A higher fluid viscosity delays ligament break-up, but also leads to slower jets, while viscoelasticity reduces satellite formation only in certain cases. We show here that aqueous solutions of PEDOT:PSS (1:2.5 by weight) are strongly shear-thinning. They exhibit low viscosity within the printing nozzle over a wide range of jet speeds, yet rapidly (<100 μs) recover a higher viscosity at the low shear rates applicable once the jet has formed, which give the benefit of delayed satellite formation. The delay over a 0.8 mm stand-off distance can be sufficient to completely suppress satellites, which is significant for many printing applications. © 2012 Elsevier B.V. All rights reserved.
Resumo:
Fluid assessment methods, requiring small volumes and avoiding the need for jetting, are particularly useful in the design of functional fluids for inkjet printing applications. With the increasing use of complex (rather than Newtonian) fluids for manufacturing, single frequency fluid characterisation cannot reliably predict good jetting behaviour, owing to the range of shearing and extensional flow rates involved. However, the scope of inkjet fluid assessments (beyond achievement of a nominal viscosity within the print head design specification) is usually focused on the final application rather than the jetting processes. The experimental demonstration of the clear insufficiency of such approaches shows that fluid jetting can readily discriminate between fluids assessed as having similar LVE characterisation (within a factor of 2) for typical commercial rheometer measurements at shearing rates reaching 104rads-1.Jetting behaviour of weakly elastic dilute linear polystyrene solutions, for molecular weights of 110-488. kDa, recorded using high speed video was compared with recent results from numerical modelling and capillary thinning studies of the same solutions.The jetting images show behaviour ranging from near-Newtonian to "beads-on-a-string". The inkjet printing behaviour does not correlate simply with the measured extensional relaxation times or Zimm times, but may be consistent with non-linear extensibility L and the production of fully extended polymer molecules in the thinning jet ligament.Fluid test methods allowing a more complete characterisation of NLVE parameters are needed to assess inkjet printing feasibility prior to directly jetting complex fluids. At the present time, directly jetting such fluids may prove to be the only alternative. © 2014 The Authors.
Resumo:
This study explores a number of low-viscosity glass-forming polymers for their suitability as high-speed materials in electrohydrodynamic (EHD) lithography. The use of low-viscosity polymer films significantly reduces the patterning time (to below 10 s) compared to earlier approaches, without compromising the high fidelity of the replicated structures. The rapid pace of this process requires a method to monitor the completion of EHD pattern formation. To this end, the leakage current across the device is monitored and the sigmoidal shape of the current curve is correlated with the various stages of EHD pattern formation.