150 resultados para Ultrasonic Technique


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article presents a new method for acquiring three-dimensional (3-D) volumes of ultrasonic axial strain data. The method uses a mechanically-swept probe to sweep out a single volume while applying a continuously varying axial compression. Acquisition of a volume takes 15-20 s. A strain volume is then calculated by comparing frame pairs throughout the sequence. The method uses strain quality estimates to automatically pick out high quality frame pairs, and so does not require careful control of the axial compression. In a series of in vitro and in vivo experiments, we quantify the image quality of the new method and also assess its ease of use. Results are compared with those for the current best alternative, which calculates strain between two complete volumes. The volume pair approach can produce high quality data, but skillful scanning is required to acquire two volumes with appropriate relative strain. In the new method, the automatic quality-weighted selection of image pairs overcomes this difficulty and the method produces superior quality images with a relatively relaxed scanning technique.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Displacement estimation is a key step in the evaluation of tissue elasticity by quasistatic strain imaging. An efficient approach may incorporate a tracking strategy whereby each estimate is initially obtained from its neighbours' displacements and then refined through a localized search. This increases the accuracy and reduces the computational expense compared with exhaustive search. However, simple tracking strategies fail when the target displacement map exhibits complex structure. For example, there may be discontinuities and regions of indeterminate displacement caused by decorrelation between the pre- and post-deformation radio frequency (RF) echo signals. This paper introduces a novel displacement tracking algorithm, with a search strategy guided by a data quality indicator. Comparisons with existing methods show that the proposed algorithm is more robust when the displacement distribution is challenging.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work describes the deposition, annealing and characterisation of semi-insulating oxygen-doped silicon films at temperatures compatible with polysilicon circuitry on glass. The semi-insulating layers are deposited by the plasma enhanced chemical vapour deposition technique from silane (SiH4), nitrous oxide (N2O) and helium (He) gas mixtures at a temperature of 350 °C. The as-deposited films are then furnace annealed at 600 °C which is the maximum process temperature. Raman analysis shows the as-deposited and annealed films to be completely amorphous. The most important deposition variable is the N2O SiH4 gas ratio. By varying the N2O SiH4 ratio the conductivity of the annealed films can be accurately controlled, for the first time, down to a minimum of ≈10-7Ω-1cm-1 where they exhibit a T -1 4 temperature dependence indicative of a hopping conduction mechanism. Helium dilution of the reactant gases is shown to improve both film uniformity and reproducibility. A model for the microstructure of these semi-insulating amorphous oxygen-doped silicon films is proposed to explain the observed physical and electrical properties. © 1995.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work describes the annealing and characterisation of semi-insulating oxygen-doped silicon films deposited by the Plasma Enhanced Chemical Vapour Deposition (PECVD) technique from silane (SiH4), nitrous oxide (N2O) and helium (He) gas mixtures. The maximum process temperature is chosen to be compatible with large area polycrystalline silicon (poly-Si) circuitry on glass. The most important deposition variable is shown to be the N2O SiH4 gas ratio. Helium dilution results in improved film uniformity and reproducibility. Raman analysis shows the 'as-deposited' and annealed films to be completely amorphous. A model for the microstructure of these Semi-Insulating Amorphous Oxygen-doped Silicon (SIAOS) films is proposed to explain the observed physical and electrical properties. © 1995.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Receptor-based detection of pathogens often suffers from non-specific interactions, and as most detection techniques cannot distinguish between affinities of interactions, false positive responses remain a plaguing reality. Here, we report an anharmonic acoustic based method of detection that addresses the inherent weakness of current ligand dependant assays. Spores of Bacillus subtilis (Bacillus anthracis simulant) were immobilized on a thickness-shear mode AT-cut quartz crystal functionalized with anti-spore antibody and the sensor was driven by a pure sinusoidal oscillation at increasing amplitude. Biomolecular interaction forces between the coupled spores and the accelerating surface caused a nonlinear modulation of the acoustic response of the crystal. In particular, the deviation in the third harmonic of the transduced electrical response versus oscillation amplitude of the sensor (signal) was found to be significant. Signals from the specifically-bound spores were clearly distinguishable in shape from those of the physisorbed streptavidin-coated polystyrene microbeads. The analytical model presented here enables estimation of the biomolecular interaction forces from the measured response. Thus, probing biomolecular interaction forces using the described technique can quantitatively detect pathogens and distinguish specific from non-specific interactions, with potential applicability to rapid point-of-care detection. This also serves as a potential tool for rapid force-spectroscopy, affinity-based biomolecular screening and mapping of molecular interaction networks.

Relevância:

20.00% 20.00%

Publicador: