47 resultados para UNIAXIAL TENSION


Relevância:

60.00% 60.00%

Publicador:

Resumo:

A small strain two-dimensional discrete dislocation plasticity framework coupled to vacancy diffusion is developed wherein the motion of edge dislocations is by a combination of glide and climb. The dislocations are modelled as line defects in a linear elastic medium and the mechanical boundary value problem is solved by the superposition of the infinite medium elastic fields of the dislocations and a complimentary non-singular solution that enforces the boundary conditions. Similarly, the climbing dislocations are modelled as line sources/sinks of vacancies and the vacancy diffusion boundary value problem is also solved by a superposition of the fields of the line sources/sinks in an infinite medium and a complementary non-singular solution that enforces the boundary conditions. The vacancy concentration field along with the stress field provides the climb rate of the dislocations. Other short-range interactions of the dislocations are incorporated via a set of constitutive rules. We first employ this formulation to investigate the climb of a single edge dislocation in an infinite medium and illustrate the existence of diffusion-limited and sink-limited climb regimes. Next, results are presented for the pure bending and uniaxial tension of single crystals oriented for single slip. These calculations show that plasticity size effects are reduced when dislocation climb is permitted. Finally, we contrast predictions of this coupled framework with an ad hoc model in which dislocation climb is modelled by a drag-type relation based on a quasi steady-state solution. © 2013 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we develop a novel moving mesh method suitable for solving axisymmetric free-boundary problems, including the Marangoni effect induced by surfactant or temperature variation. This method employs a body-fitted grid system where the gas-liquid interface is one line of the grid system. We model the surfactant equation of state with a non-linear Langmuir law, and, for simplicity, we limit ourselves to the situation of an insoluble surfactant. We solve complicated dynamic boundary conditions accurately on the gas-liquid interface in the framework of finite-volume methods. Our method is used to study the effect of a surfactant on the skin friction of a bubble in a uniaxial flow. For the limiting case where the surface diffusivity is zero, the effect of a tangential stress generated by the surface tension gradient, allows us to explain a new phenomenon in high concentration regimes: larger surface tension, but also larger deformation. Furthermore, this condition leads to the formation of boundary layers and flow separation at high Reynolds numbers. The influence of these complex flow patterns is examined. © 2005 Elsevier SAS. All rights reserved.

Relevância:

20.00% 20.00%

Publicador: