47 resultados para Two-Fluid Model


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The study of pair-wise interactions between swimming microorganisms is fundamental to the understanding of the rheological and transport properties of semi-dilute suspensions. In this paper, the hydrodynamic interaction of two ciliated microorganisms is investigated numerically using a boundary-element method, and the microorganisms are modeled as spherical squirmers that swim by time-dependent surface deformations. The results show that the inclusion of the unsteady terms in the ciliary propulsion model has a large impact on the trajectories of the interacting cells, and causes a significant change in scattering angles with potential important consequences on the diffusion properties of semi-dilute suspensions. Furthermore, the analysis of the shear stress acting on the surface of the microorganisms revealed that the duration and the intensity of the near-field interaction are significantly modified by the presence of unsteadiness. This observation may account for the hydrodynamic nature of randomness in some biological reactions, and supersedes the distinction between intrinsic randomness and hydrodynamic interactions, adding a further element to the understanding and modeling of interacting microorganisms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We show that miscible two-layer free-surface flows of varying viscosity down an inclined substrate are different in their stability characteristics from both immiscible two-layer flows, and flows with viscosity gradients spanning the entire flow. New instability modes arise when the critical layer of the viscosity transport equation overlaps the viscosity gradient. A lubricating configuration with a less viscous wall layer is identified to be the most stabilizing at moderate miscibility (moderate Peclet numbers). This also is in contrast with the immiscible case, where the lubrication configuration is always destabilizing. The co-existence that we find under certain circumstances, of several growing overlap modes, the usual surface mode, and a Tollmien-Schlichting mode, presents interesting new possibilities for nonlinear breakdown. © 2013 AIP Publishing LLC.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Although increasing the turbine inlet temperature has traditionally proved the surest way to increase cycle efficiency, recent work suggests that the performance of future gas turbines may be limited by increased cooling flows and losses. Another limiting scenario concerns the effect on cycle performance of real gas properties at high temperatures. Cycle calculations of uncooled gas turbines show that when gas properties are modelled accurately, the variation of cycle efficiency with turbine inlet temperature at constant pressure ratio exhibits a maximum at temperatures well below the stoichiometric limit. Furthermore, the temperature at the maximum decreases with increasing compressor and turbine polytropic efficiency. This behaviour is examined in the context of a two-component model of the working fluid. The dominant influences come from the change of composition of the combustion products with varying air/fuel ratio (particularly the contribution from the water vapour) together with the temperature variation of the specific heat capacity of air. There are implications for future industrial development programmes, particularly in the context of advanced mixed gas-steam cycles.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper deals with particle deposition onto solid walls from turbulent flows. The aim of the study is to model particle deposition in industrial flows, such as the one in gas turbines. The numerical study has been carried out with a two fluid approach. The possible contribution to the deposition from Brownian diffusion, turbulent diffusion and shear-induced lift force are considered in the study. Three types of turbulent two-phase flows have been studied: turbulent channel flow, turbulent flow in a bent duct and turbulent flow in a turbine blade cascade. In the turbulent channel flow case, the numerical results from a two-dimensional code show good agreement with numerical and experimental results from other resources. Deposition problem in a bent duct flow is introduced to study the effect of curvature. Finally, the deposition of small particles on a cascade of turbine blades is simulated. The results show that the current two fluid models are capable of predicting particle deposition rates in complex industrial flows.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper describes large-scale simulations of compressible flows over a supersonic disk-gap-band parachute system. An adaptive mesh refinement method is used to resolve the coupled fluid-structure model. The fluid model employs large-eddy simulation to describe the turbulent wakes appearing upstream and downstream of the parachute canopy and the structural model employed a thin-shell finite element solver that allows large canopy deformations by using subdivision finite elements. The fluid-structure interaction is described by a variant of the Ghost-Fluid method. The simulation was carried out at Mach number 1.96 where strong nonlinear coupling between the system of bow shocks, turbulent wake and canopy is observed. It was found that the canopy oscillations were characterized by a breathing type motion due to the strong interaction of the turbulent wake and bow shock upstream of the flexible canopy. Copyright © 2010 by ASME.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper we quantitatively analyse the performance of magnetically-driven artificial cilia for lab-on-a-chip applications. The artificial cilia are fabricated using thin polymer films with embedded magnetic nano-particles and their deformation is studied under different external magnetic fields and flows. A coupled magneto-mechanical solid-fluid model that accurately captures the interaction between the magnetic field, cilia and fluid is used to simulate the cilia motion. The elastic and magnetic properties of the cilia are obtained by fitting the results of the computational model to the experimental data. The performance of the artificial cilia with a non-uniform cross-section is characterised using the numerical model for two channel configurations that are of practical importance: an open-loop and a closed-loop channel. We predict that the flow and pressure head generated by the artificial cilia can be as high as 18 microlitres per minute and 3 mm of water, respectively. We also study the effect of metachronal waves on the flow generated and show that the fluid propelled increases drastically compared to synchronously beating cilia, and is unidirectional. This increase is significant even when the phase difference between adjacent cilia is small. The obtained results provide guidelines for the optimal design of magnetically-driven artificial cilia for microfluidic propulsion.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper provides a case study on the deepest excavation carried out so far in the construction of the metro network in Shanghai, which typically features soft ground. The excavation is 38 m deep with retaining walls 65 m deep braced by 9 levels of concrete props. To obtain a quick and rough prediction, two centrifuge model tests were conducted, in which one is for the 'standard' section with green field surrounding and the other with an adjacent piled building. The tests were carried out in a run-stop-excavation-run style, in which excavation was conducted manually. By analyzing the lateral wall displacement, ground deformation, bending moment and earth pressure, the test results are shown to be reasonably convincing and the design and construction were validated. Such industry orientated centrifuge modeling was shown to be useful in understanding the performance of geotechnical processes, especially when engineers lack relevant field experience. © 2010 Taylor & Francis Group, London.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Numerical techniques for non-equilibrium condensing flows are presented. Conservation equations for homogeneous gas-liquid two-phase compressible flows are solved by using a finite volume method based on an approximate Riemann solver. The phase change consists of the homogeneous nucleation and growth of existing droplets. Nucleation is computed with the classical Volmer-Frenkel model, corrected for the influence of the droplet temperature being higher than the steam temperature due to latent heat release. For droplet growth, two types of heat transfer model between droplets and the surrounding steam are used: a free molecular flow model and a semi-empirical two-layer model which is deemed to be valid over a wide range of Knudsen number. The computed pressure distribution and Sauter mean droplet diameters in a convergent-divergent (Laval) nozzle are compared with experimental data. Both droplet growth models capture qualitatively the pressure increases due to sudden heat release by the non-equilibrium condensation. However the agreement between computed and experimental pressure distributions is better for the two-layer model. The droplet diameter calculated by this model also agrees well with the experimental value, whereas that predicted by the free molecular model is too small. Condensing flows in a steam turbine cascade are calculated at different Mach numbers and inlet superheat conditions and are compared with experiments. Static pressure traverses downstream from the blade and pressure distributions on the blade surface agree well with experimental results in all cases. Once again, droplet diameters computed with the two-layer model give best agreement with the experiments. Droplet sizes are found to vary across the blade pitch due to the significant variation in expansion rate. Flow patterns including oblique shock waves and condensation-induced pressure increases are also presented and are similar to those shown in the experimental Schlieren photographs. Finally, calculations are presented for periodically unsteady condensing flows in a low expansion rate, convergent-divergent (Laval) nozzle. Depending on the inlet stagnation subcooling, two types of self-excited oscillations appear: a symmetric mode at lower inlet subcooling and an asymmetric mode at higher subcooling. Plots of oscillation frequency versus inlet sub-cooling exhibit a hysteresis loop, in accord with observations made by other researchers for moist air flow. Copyright © 2006 by ASME.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We study three contractual arrangements—co-development, licensing, and co-development with opt-out options—for the joint development of new products between a small and financially constrained innovator firm and a large technology company, as in the case of a biotech innovator and a major pharma company. We formulate our arguments in the context of a two-stage model, characterized by technical risk and stochastically changing cost and revenue projections. The model captures the main disadvantages of traditional co-development and licensing arrangements: in co-development the small firm runs a risk of running out of capital as future costs rise, while licensing for milestone and royalty (M&R) payments, which eliminates the latter risk, introduces inefficiency, as profitable projects might be abandoned. Counter to intuition we show that the biotech's payoff in a licensing contract is not monotonically increasing in the M&R terms. We also show that an option clause in a co-development contract that gives the small firm the right but not the obligation to opt out of co-development and into a pre-agreed licensing arrangement avoids the problems associated with fully committed co-development or licensing: the probability that the small firm will run out of capital is greatly reduced or completely eliminated and profitable projects are never abandoned.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Decisions about noisy stimuli require evidence integration over time. Traditionally, evidence integration and decision making are described as a one-stage process: a decision is made when evidence for the presence of a stimulus crosses a threshold. Here, we show that one-stage models cannot explain psychophysical experiments on feature fusion, where two visual stimuli are presented in rapid succession. Paradoxically, the second stimulus biases decisions more strongly than the first one, contrary to predictions of one-stage models and intuition. We present a two-stage model where sensory information is integrated and buffered before it is fed into a drift diffusion process. The model is tested in a series of psychophysical experiments and explains both accuracy and reaction time distributions. © 2012 Rüter et al.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We report on the growth of single-walled carbon nanotubes from a monometallic Co catalyst on an oxidized Si wafer support by the most simple growth recipe (vacuum annealing, growth by undiluted C 2H 2). Nevertheless, multiwavelength Raman spectroscopy and transmission electron spectroscopy show a remarkable selectivity for chiral indices and thus, e.g., high abundance with a single chirality representing 58% of all semiconducting tubes. In situ x-ray photoelectron spectroscopy monitors the catalyst chemistry during carbon nanotube growth and shows interfacial Co-Si interactions that may help to stabilize the nanoparticle/nanotube diameter. We outline a two-mechanism model explaining the selective growth. © 2012 American Physical Society.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In a typical experiment on decision making, one out of two possible stimuli is displayed and observers decide which one was presented. Recently, Stanford and colleagues (2010) introduced a new variant of this classical one-stimulus presentation paradigm to investigate the speed of decision making. They found evidence for "perceptual decision making in less than 30 ms". Here, we extended this one-stimulus compelled-response paradigm to a two-stimulus compelled-response paradigm in which a vernier was followed immediately by a second vernier with opposite offset direction. The two verniers and their offsets fuse. Only one vernier is perceived. When observers are asked to indicate the offset direction of the fused vernier, the offset of the second vernier dominates perception. Even for long vernier durations, the second vernier dominates decisions indicating that decision making can take substantial time. In accordance with previous studies, we suggest that our results are best explained with a two-stage model of decision making where a leaky evidence integration stage precedes a race-to-threshold process. © 2013 Rüter et al.