28 resultados para Two operation modes
Resumo:
A novel film bulk acoustic resonator (FBAR) with two resonant frequencies which have opposite reactions to temperature changes has been designed. The two resonant modes respond differently to changes in temperature and pressure, with the frequency shift being linearly correlated with temperature and pressure changes. By utilizing the FBAR's sealed back trench as a cavity, an on-chip single FBAR sensor suitable for measuring pressure and temperature simultaneously is proposed and demonstrated. The experimental results show that the pressure coefficient of frequency for the lower frequency peak of the FBAR sensors is approximately -17.4 ppm kPa-1, while that for the second peak is approximately -6.1 ppm kPa-1, both of them being much more sensitive than other existing pressure sensors. This dual mode on-chip pressure sensor is simple in structure and operation, can be fabricated at very low cost, and yet requires no specific package, therefore has great potential for applications. © 2012 IOP Publishing Ltd.
Resumo:
We present a technique for independently exciting two resonant modes of vibration in a single-crystal silicon bulk mode microresonator using the same electrode configuration through control of the polarity of the DC actuation voltage. Applications of this technique may include built-in temperature compensation by the simultaneous selective excitation of two closely spaced modes that may have different temperature coefficients of resonant frequency. The technique is simple and requires minimum circuit overhead for implementation. The technique is implemented on square plate resonators with quality factors as high as 3.06 × 106. Copyright © 2008 by ASME.
Resumo:
This paper presents the characterisation of self-excited oscillations in a kerosene burner. The combustion instability exhibits two different modes and frequencies depending on the air flow rate. Experimental results reveal the influence of the spray to shift between these two modes. Pressure and heat release fluctuations have been measured simultaneously and the flame transfer function has been calculated from these measurements. The Mie scattering technique has been used to record spray fluctuations in reacting conditions with a high speed camera. Innovative image processing has enabled us to obtain fluctuations of the Mie scattered light from the spray as a temporal signal acquired simultaneously with pressure fluctuations. This has been used to determine a transfer function relating the image intensity and hence the spray fluctuations to changes in air velocity. This function has identified the different role the spray plays in the two modes of instability. At low air flow rates, the spray responds to an unsteady air flow rate and the time varying spray characteristics lead to unsteady combustion. At higher air flow rates, effective evaporation means that the spray dynamics are less important, leading to a different flame transfer function and frequency of self-excited oscillation. In conclusion, the combustion instabilities observed are closely related with the fluctuations of the spray motion and evaporation.
Resumo:
Differential growth of thin elastic bodies furnishes a surprisingly simple explanation of the complex and intriguing shapes of many biological systems, such as plant leaves and organs. Similarly, inelastic strains induced by thermal effects or active materials in layered plates are extensively used to control the curvature of thin engineering structures. Such behaviour inspires us to distinguish and to compare two possible modes of differential growth not normally compared to each other, in order to reveal the full range of out-of-plane shapes of an initially flat disk. The first growth mode, frequently employed by engineers, is characterised by direct bending strains through the thickness, and the second mode, mainly apparent in biological systems, is driven by extensional strains of the middle surface. When each mode is considered separately, it is shown that buckling is common to both modes, leading to bistable shapes: growth from bending strains results in a double-curvature limit at buckling, followed by almost developable deformation in which the Gaussian curvature at buckling is conserved; during extensional growth, out-of-plane distortions occur only when the buckling condition is reached, and the Gaussian curvature continues to increase. When both growth modes are present, it is shown that, generally, larger displacements are obtained under in-plane growth when the disk is relatively thick and growth strains are small, and vice versa. It is also shown that shapes can be mono-, bi-, tri- or neutrally stable, depending on the growth strain levels and the material properties: furthermore, it is shown that certain combinations of growth modes result in a free, or natural, response in which the doubly curved shape of disk exactly matches the imposed strains. Such diverse behaviour, in general, may help to realise more effective actuation schemes for engineering structures. © 2012 Elsevier Ltd. All rights reserved.
Resumo:
The combination of light carbon fiber reinforced polymer (CFRP) composite materials with structurally efficient sandwich panel designs offers novel opportunities for ultralight structures. Here, pyramidal truss sandwich cores with relative densities ρ̄ in the range 1-10% have been manufactured from carbon fiber reinforced polymer laminates by employing a snap-fitting method. The measured quasi-static shear strength varied between 0.8 and 7.5 MPa. Two failure modes were observed: (i) Euler buckling of the struts and (ii) delamination failure of the laminates. Micro-buckling failure of the struts was not observed in the experiments reported here while Euler buckling and delamination failures occurred for the low (ρ̄≤1%) and high (ρ̄>1%) relative density cores, respectively. Analytical models for the collapse of the composite cores by these failure modes are presented. Good agreement between the measurements and predictions based on the Euler buckling and delamination failure of the struts is observed while the micro-buckling analysis over-predicts the measurements. The CFRP pyramidal cores investigated here have a similar mechanical performance to CFRP honeycombs. Thus, for a range of multi-functional applications that require an "open-celled" architecture (e.g. so that cooling fluid can pass through a sandwich core), the CFRP pyramidal cores offer an attractive alternative to honeycombs. © 2012 Elsevier Ltd. All rights reserved.
Resumo:
We report straight and vertically aligned defect-free GaAs nanowires grown on Si(111) substrates by metal-organic chemical vapor deposition. By deposition of thin GaAs buffer layers on Si substrates, these nanowires could be grown on the buffer layers with much less stringent conditions as otherwise imposed by epitaxy of III-V compounds on Si. Also, crystal-defect-free GaAs nanowires were grown by using either a two-temperature growth mode consisting of a short initial nucleation step under higher temperature followed by subsequent growth under lower temperature or a rapid growth rate mode with high source flow rate. These two growth modes not only eliminated planar crystallographic defects but also significantly reduced tapering. Core-shell GaAs-AlGaAs nanowires grown by the two-temperature growth mode showed improved optical properties with strong photoluminescence and long carrier life times. © 2011 American Chemical Society.
Resumo:
A novel temperature and pressure sensor based on a single film bulk acoustic resonator (FBAR) is designed. This FBAR support two resonant modes, which response opposite to the change of temperature. By sealed the back cavity of a back-trench membrane type FBAR with silicon wafer, an on-chip single FBAR sensor suitable for measuring temperature and pressure simultaneously is proposed. For unsealed device, the experimental results show that the first resonant mode has a temperature coefficient of frequency (TCF) of 69.5ppm/K, and the TCF of the second mode is -8.1ppm/K. After sealed the back trench, it can be used as a pressure sensor, the pressure coefficient of frequency (PCF) for the two resonant mode is -17.4ppm/kPa and -6.1 ppm/kPa respectively, both of them being more sensitive than other existing pressure sensors. © 2013 Trans Tech Publications Ltd, Switzerland.
Resumo:
Toolpath design in spinning is an open ended problem, with a large number of solutions, and remains an art acquired by practice. To be able to specify a toolpath without the need for experimental trials, further understanding of the process mechanics Is required. At the moment, the mechanics of the process Is not completely understood, due to the complex deformation and because long solution times required for accurate numerical modelling of the process Inhibit detailed study. This paper proposes and applies a new approach to modelling the process and aims to contribute to the understanding of process mechanics, In particular with respect to the mechanisms of failure and and to apply this understanding for toolpath design In spinning. A new approach to numerical modelling Is proposed and applied to Investigate the process. The findings suggest that there are two different causes and two different modes of wrinkling In spinning, depending on the stage In the process and direction of roller movement. A simple test Is performed to estimate the limits of wrinkling and provide a guideline for toolpath design In a typical spinning process. The results show that the required toolpath geometry in the early stages of the process is different from that In later stages. © 2011 Wiley-VCH Verlag GmbH & Co. KGaA. Weinheim.
Resumo:
Uncooled, high-speed modulation of two-contact lasers is presented with ultra-low drive currents. Practical operation at 10Gb/s up to temperatures of 85°C and extinction ratios of 6dB are found for current swings which are less than 40% of conventional lasers.